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Chapter 1. Introduction

1.1. First session

Python 2.4.2 (#1, Dec 20 2005, 16:25:40)
[GCC 4.0.0 (Apple Computer, Inc. build 5026)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 1 + 5
6
>>> 2 * 5
10
>>> 1 / 2
0

Is it the right answer?

>>> float(1 / 2)
0.0
>>> 1 / 2.0
0.5
>>> float(1)/2
0.5

>>> ’aaa’
’aaa’
>>> len(’aaa’)
3

What happened?

>>> len(’aaa’) + len(’ttt’)
6
>>> len(’aaa’) + len(’ttt’) + 1
7
>>> ’aaa’ + ’ttt’
’aaattt’
>>> ’aaa’ + 5
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

Read carefully the error message, and explain it.

How to protect you from this kind of problem?

>>> type(1)
<type ’int’>
>>> type(’1’)
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<type ’str’>
>>> type(1.0)
<type ’float’>

You can associate a name to a value:

>>> a = 3
>>> a
3

The interpreter displays the value (3) of the variable (a).

>>> myVar = ’one sentence’
>>> myVar
’one sentence’
>>> 1string = ’one string’

File "<stdin>", line 1
1string = ’one string’

^
SyntaxError: invalid syntax

Read carefully the error message, and explain it.

>>> myvar
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’myvar’ is not defined

What appended?

>>> a = 2
>>> a
2
>>> a * 5
10
>>> b = a * 5
>>> b
10
>>> a = 1
>>> b
10

Why hasn’t b changed?

What is the difference between:
>>> b = a * 5
and:
>>> b = 5
?
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>>> a = 1 in this case a is a number
>>> a + 2
3
>>> a = ’1’ in this case a is a string
>>> a + 1

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: cannot concatenate ’str’ and ’int’ objects

What do you conclude about the type of a variable?

Some magical stuff, that will be explained later:

>>> from string import *

We can also perform calculus on strings:

>>> codon=’atg’
>>> codon * 3
’atgatgatg’
>>> seq1 = ’agcgccttgaattcggcaccaggcaaatctcaaggagaagttccggggagaaggtgaaga’
>>> seq2 = ’cggggagtggggagttgagtcgcaagatgagcgagcggatgtccactatgagcgataata’

How do you concatenate seq1 and seq2 in a single string?

>>> seq = seq1 + seq2

What is the length of the string seq?

>>> len(seq)
120

Does the string seq contain the ambiguous ’n’ base?
>>> ’n’ in seq
False

Does it contain an adenine base?
>>> ’a’ in seq
True

>>> seq[1]
’g’

Why?
Because in computer science, strings are numbered from 0 to string length - 1
so the first character is:
>>> seq[0]
’a’
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Display the 12th base.

>>> seq[11]
’t’

Find the index of the last character.

>>> len(seq)
120

So, because we know the sequence length, we can display the last character
by:
>>> seq[119]
’a’

But this is not true for all the sequences we will work on.
Find a more generic way to do it.

>>> seq[len(seq) - 1]
’a’

Python provides a special form to get the characters from the end of a string:

>>> seq[-1]
’a’
>>> seq[-2]
’t’

Find a way to get the first codon from the sequence
>>> seq[0] + seq[1] + seq[2]
’agc’

Python provides a form to get ’slices’ from strings:
>>> seq[0:3]
’agc’
>>> seq[3:6]
’gcc’

How many of each base does this sequence contains?

>>> count(seq, ’a’)
35
>>> count(seq, ’c’)
21
>>> count(seq, ’g’)
44
>>> count(seq, ’t’)
12

Count the percentage of each base on the sequence.
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Example for the adenine representation

>>> long = len(seq)
>>> nb_a = count(seq, ’a’)
>>> (nb_a / long) * 100
0

What happened? How 35 bases from 120 could be 0 percent?
This is due to the way the numbers are represented inside the computer.

>>> float(nb_a) / long * 100
29.166666666666668

Now, let us say that you want to find specific pattern on a DNA sequence:

>>> dna = """tgaattctatgaatggactgtccccaaagaagtaggacccactaatgcagatcctgga
tccctagctaagatgtattattctgctgtgaattcgatcccactaaagat"""
>>> EcoRI = ’GAATTC’
>>> BamHI = ’GGATCC’

Looking at the sequence you will see that EcoRI is present twice and
BamHI just once:

tgaattctatgaatggactgtccccaaagaagtaggacccactaatgcagatcctgga
~~~~~~ ~~~

tccctagctaagatgtattattctgctgtgaattcgatcccactaaaga
~~~ ~~~~~~

>>> count(dna, EcoRI)
0

Why ??

>>> ’atgc’ == ’atgc’
True
>>> ’atgc’ == ’gcta’
False
>>> ’atgc’ == ’ATGC’
False

why are ’atgc’ and ’ATGC’ different?

We can change the case of a string:

>>> EcoRI = lower(EcoRI)
>>> EcoRI
’gaattc’
>>> count(dna, EcoRI)
2
>>> find(dna, EcoRI)
1

5



Chapter 1. Introduction

>>> find(dna, EcoRI, 2)
88
>>> BamHI = lower(BamHI)
>>> count(dna, BamHI)
0

Why ?

Tip: display the sequence:

>>> dna
’tgaattctatgaatggactgtccccaaagaagtaggacccactaatgcagatcctgga\ntccctagctaagatgtattattctgctgtgaattcgatcccactaaagat’

What is this ’\n’ character?

How to remove it?

>>> dna = replace(dna, ’\n’, ”)
>>> dna
’tgaattctatgaatggactgtccccaaagaagtaggacccactaatgcagatcctggatccctagctaagatgtattattctgctgtgaattcgatcccactaaagat’

>>>find(dna, BamHI)
54

Using the mechanisms we have learnt so far, produce the complement of
the dna sequence.

1.2. Documentation

1.3. Why Python
The reasons to use Python as a first language to learn programming are manyfold. First, there are studies that
show that Python is well designed for beginners [Wang2002] and the language has been explicitely designed by
its author to be easier to learn [Rossum99]. Next, it is more and more often used in bioinformatics as a general-
purpose programming language, to both build components and applications [Mangalam2002]. Another very
important reason is the object-orientation, that is necessary not just for aesthetics but to scale to modern large-scale
programming [Booch94][Meyer97]. Finally, a rich library of modules for scripting and network programming are
essential for bioinformatics which very often relies on the integration of existing tools.

1.4. Programming Languages
What can computers do for you? Computers can execute tasks very rapidly, but in order to achieve this they
need an accurate description of the task. They can handle a greater amount of input data than you can. But they
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can not design a strategy to solve problems for you. So if you can not figure out the procedure that solve your
problem computers cannot help you.

The Computers own language. Computers do not understand any of the natural languages such as English,
French or German. Their proper language, also calledmachine language, is only composed of two symbols “0”
and “1”, or power “on” - “off”. They have a sort of a dictionary containing all valid words of this language. These
words are the basic instructions, such as “add 1 to some number”, “are two values the same” or “copy a byte of
memory to another place”. The execution of these basic instructions are encoded by hardware components of the
processor.

Programming languages. Programming languages belongs to the group offormal languages. Some other
examples offormal languagesare the system of mathematical expressions or the languages chemists use to
describe molecules. They have been invented as intermediate abstraction level between humans and computers.

Why do not use natural languages as programming languages?Programming languagesare design to prevent
problems occurring withnatural language.

Ambiguity Natural languages are full of ambiguities and we need the context of a word in order to
choose the appropriate meaning. “minute” for example is used as a unit of time as a noun,
but means tiny as adjective: only the context would distinguish the meaning.

Redundancy Natural languages are full of redundancy helping to solve ambiguity problems and to
minimize misunderstandings. When you say “We are playing tennis at the moment.”, “at
the moment” is not really necessary but underlines that it is happening now.

Literacy Natural languages are full of idioms and metaphors. The most popular in English is
probably “It rains cats and dogs.”. Besides, this can be very complicated even if you speak
a foreign language very well.

Programming languagesare foreign languages for computers. Therefore you need a program that translates your
source codeinto themachine language. Programming languagesare voluntarily unambiguous, nearly context
free and non-redundant, in order to prevent errors in the translation process.

History of programming languages. It is instructive to try to communicate with a computer in its own language.
This let you learn a lot about how processors work. However, in order to do this, you will have to manipulate only
0’s and 1’s. You will need a good memory, but probably you would never try to write a program solving real world
problems at this basic level ofmachine code.

Because humans have difficulties to understand, analyze and extract informations of sequences of zeros and ones,
they have written a language calledAssemblerthat maps the instruction words to synonyms that give an idea of
what the instruction does, so for instance0001becameadd. Assemblerincreased the legibility of the code, but
the instruction set remained basic and depended on the hardware of the computer.

In order to write algorithms for solving more complex problems, there was a need for machine independenthigher
level programming languageswith a more elaborated instruction set than thelow levelAssembler. The first ones
wereFortran andC and a lot more have been invented right now. A short history of a subset of programming
languages is shown in Figure 1.1.
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Figure 1.1. History of programming languages(Source)
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2.1. Data, values and types of values
In the first session we have explored some basic issues about a DNA sequence. The specific DNA sequence
’atcgat’ was one of our data. For computer scientists this is also avalue. During the program executionvalues
are represented in the memory of the computer. In order to interpret these representations correctlyvalueshave a
type.

Type

Typesaresetsof data orvaluessharing some specific properties and their associated operations.

We have modeled the DNA sequence, out of habit, as astring. 1 Strings are one of the basic types that Python can
handle. In the gc calculation we have seen two other ones:integersandfloats. If you are not sure what sort of data
you are working with, you can ask Python about it.

>>> type(’atcgat’)
<type ’str’>
>>> type(1)
<type ’int’>
>>> type(’1’)
<type ’str’>

2.2. Variables or naming values
If you need avaluemore than once or you need the result of a calculation later, you have to give it a name to
remember it. Computer scientists also saybinding a value to a nameor assign a value to a variable.

Binding

Binding is the process ofnamingavalue.

Variable

Variablesarenamesbound tovalues. You can also say that avariable is anamethat refers to avalue.

>>> EcoRI = ’GAATTC’

For Python the model is important because it knows nothing about DNA but it knows a lot about strings.
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So the variableEcoRI is a name that refers to the stringvalue’GAATTC’ .

The construction used to give names to values is called anassignment. Python, as a lot of other programming
languages, use the sign= to assignvalueto variables. The two sides of the sign= can not be interchanged. The
left side has always to be avariableand the right side avalueor a result of a calculation.

Caution

Do not confuse the usage of= in computer science and mathematics. In mathematics, it represents the
equality, whereas in Python it is used to give names. So all the following statements are not valid in
Python:

>>> ’GAATTC’ = EcoRI
SyntaxError: can’t assign to literal
>>> 1 = 2
SyntaxError: can’t assign to literal

We will see later how to compare things in Python (Section 11.2).

2.3. Variable and keywords, variable syntax
Python has some conventions for variable names. You can use any letter, the special characters “_” and every
number provided you do not start with it. White spaces and signs with special meanings in Python, as “+” and “-”
are not allowed.

Important

Python variable names are case-sensitive, soEcoRI andecoRI are not the same variable.

>>> EcoRI = ’GAATTC’
>>> ecoRI
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’ecoRI’ is not defined
>>> ecori
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’ecori’ is not defined
>>> EcoRI
’GAATTC’

Among the words you can construct with these letters, there are some reserved words for Python and can not be
used as variable names. Thesekeywordsdefine the language rules and have special meanings in Python. Here is
the list of all of them:
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and assert break class continue def del elif
else except exec finally for from global if
import in is lambda not or pass print
raise return try while yield

2.4. Namespaces or representing variables
How does Python find the value referenced by a variable? Python storesbindingsin aNamespace.

Namespace

A namespaceis a mapping of variable names to their values.

You can also think about anamespaceas a sort ofdictionary containing all defined variable names and the
corresponding reference to their values.

Reference

A referenceis a sort of pointer to a location in memory.

Therefore you do not have to know where exactly your value can be found in memory, Python handles this for you
via variables.

Figure 2.1. Namespace

EcoRI

gc

’GAATTC’

0.546

Memory space

105

Namespace

Figure 2.1 shows a representation of some namespace.Valueswhich have not been referenced by avariable, are
not accessible to you, because you can not access the memory space directly. So if a result of a calculation is
returned, you can use it directly and forget about it after that. Or you can create a variable holding this value and
then access this value via the variable as often as you want.

>>> from string import *
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>>> cds = """atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaa
tttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtg
ctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggc
ccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatca
tcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacattt
attgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatac
gctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtg
ggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggag
gaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaac
gcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatg
tgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagttt
caggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcacta
tgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaac
cgttttatcgggcggggtaa""".replace("\n","")

>>> float(count(cds, ’G’) + count(cds, ’C’))/ len(cds)
0.54460093896713613

Here the result of the gc-calculation is lost.

>>> gc = float(count(cds, ’G’) + count(cds, ’C’))/ len(cds)
>>> gc
0.54460093896713613

In this example you can remember the result of the gc calculation, because it is stored in the variablegc .

2.5. Reassignment of variables
It is possible toreassigna new value to an already defined variable. This will destroy the reference to its former
value and create a new binding to the new value. This is shown in Figure 2.2.

Figure 2.2. Reassigning values to variables

EcoRI

gc

’GAATTC’

0.546

Memory space

105

0.45

Namespace
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Note

In Python, it is possible to reassign a new value with a different type to a variable. This is calleddynamic
typing, because the type of the variable is assigned dynamically. Note that this is not the case in all
programming languages. Sometimes, as inC, the type of variables is assigned statically and has to be
declared before use. This is some way more secure because types of variables can be checked only by
examining the source code, whereas that is not possible if variables are dynamically typed.
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3.1. Statements
In our first practical lesson, the first thing we did, was the invocation of the Python interpreter. During the first
session we enteredstatementsthat were read, analyzed and executed by the interpreter.

Statement

Statementsare instructionsor commands that the Python interpreter can execute. Each statement is read by the
interpreter, analyzed and then executed.

3.2. Sequences or chaining statements

Program

A programis asequenceof statements that can by executed by the Python interpreter.

Sequence

Sequencingis a simpleprogramming featurethat allows to chain instructions that will be executed one by one
from top to bottom.

Later we are going to learn more complicated ways to control the flow of a program, such asbranchingand
repetition.

3.3. Functions

Function

Functionsarenamed sequencesof statements that execute some task.

We have already used functions, such as:

>>> type(’GAATTC’)
<type ’str’>
>>> len(cds)
852

For examplelen is a function that calculates the length of things and we asked here for the length of our DNA
sequencecds .
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Function call

Function callsare statements that execute orcall a function. The Python syntax offunction callsis thefunction
namefollowed by a comma separated list ofargumentsinclosed into parentheses. Even if a function does not take
any argument the parentheses are necessary.

Differences between function calls and variables.As variable names, function namesare stored in a namespace
with a reference to their corresponding sequence of statements. When they are called, their name is searched in the
namespace and the reference to their sequence of statements is returned. The procedure is the same as for variable
names. But unlike them, the following parentheses indicate that the returned value is a sequence of statements that
has to be executed. That’s why they are even necessary for functions which are called without arguments.

Arguments of functions

Argumentsarevaluesprovided to a function when the function is called. We will see more about them soon.

3.4. Operations

Operations and Operators

Operationsare “basic”functionswith their own syntax.

They have a specialOperator(a sign or a word) that is the same as a function name.Unary Operators, operations
which take one argument, are followed by their argument, andsecondary operatorsare surrounded by their two
arguments.

Here are some examples:

>>> ’GTnnAC’ + ’GAATTC’
’GTnnACGAATTC’
>>> ’GAATTC’ * 3
’GAATTCGAATTCGAATTC’
>>> ’n’ in ’GTnnAC’
1

This is only a simpler way of writing these functions provided by Python, because humans are in general more
familiar with this syntax closely related to the mathematical formal language.

3.5. Composition and Evaluation of Expressions

Composition and Expression

Compositionis a way to combine functions. The combination is also called anExpression.
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We have already used it. Here is the most complex example we have seen so far:

>>> float(count(cds, ’G’) + count(cds, ’C’)) / len(cds)
0.54460093896713613

What is happening when thisexpressionis executed? The first thing to say is that it is a mixed expression
of operations and function calls. Let’s start with the function calls. If a function is called with an argument
representing a composed expression, this one is executed first and the result value is passed to the calling function.
So thecds variable is evaluated, which returns the value that it refers to. This value is passed to thelen function
which returns the length of this value. The same happens for thefloat function. The operationcount(cds,
’G’) + count(cds, ’C’) is evaluated first, and the result is passed as argument tofloat .

Let’s continue with the operations. There is a precedence list, shown in Table 3.1, for all operators, which
determines what to execute first if there are no parentheses, otherwise it is the same as for function calls. So,
for the operationcount(cds, ’G’) + count(cds, ’C’) the twocount functions are executed first on
the value of thecds variable and “G” and “C” respectively. And the two counts are added. The result value of
the addition is then passed as argument to thefloat function followed by the division of the results of the two
functionsfloat andlen .

Table 3.1. Order of operator evaluation (highest to lowest)

Operator Name
+x, -x, ~x Unary operators
x ** y Power (right associative)
x * y, x / y,x % y Multiplication, division, modulo
x + y, x - y Addition, subtraction
x << y, x >> y Bit shifting
x & y Bitwise and
x | y Bitwise or
x < y, x <= y, x > y, x >= y, x == y,
x != y, x <> y, x is y, x is not y, x
in s, x not in s<

Comparison, identity, sequence membership tests

not x Logical negation
x and y Logical and
lambda args: expr Anonymous function

So, as in mathematics, the innermost function or operation is evaluated first and the result is passed as argument
to the enclosing function or operation. It is important to notice thatvariablesare evaluated and only theirvalues
are passed as argument to the function. We will have a closer look at this when we talk about function definitions
in Section 8.1.

Exercise 3.1. Composition

Have a look at this example. Can you explain what happens? If you can’t please read this section once again.
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>>> from string import *
>>> replace(replace(replace(cds, ’A’, ’a’), ’T’, ’A’), ’a’, ’T’)

18
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Chapter 4. Communication with outside

4.1. Output
We saw in the previous chapter how to export information outside of the program using theprint statement.
Let’s give a little bit more details of its use here.

The print statements can be followed by a variable number of values separated by commas. Without a value
print puts only a newline character on thestandard output, generally the screen. If values are provided, they
are transformed into strings, and then are written in the given order, separated by a space character. The line is
terminated by a newline character. You can suppress the final newline character by adding a comma at the end of
the list. The following example illustrates all these possibilities:

#! /usr/local/bin/python

from string import *

dna = "ATGCAGTGCATAAGTTGAGATTAGAGACCCGACAGTA"

gc = float(count(dna, ’G’) + count(dna, ’C’))/ len(dna)

print gc

print "the gc percentage of dna:", dna, "is:", gc
print
print "the gc percentage of dna:", dna
print " is:", gc
print
print "the gc percentage of dna:", dna,
print "is:", gc

producing the following output:

caroline:~> python print_gc.2.py
0.432432432432
the gc percentage of dna: ATGCAGTGCATAAGTTGAGATTAGAGACCCGACAGTA is: 0.432432432432

the gc percentage of dna: ATGCAGTGCATAAGTTGAGATTAGAGACCCGACAGTA
is: 0.432432432432

the gc percentage of dna: ATGCAGTGCATAAGTTGAGATTAGAGACCCGACAGTA is: 0.432432432432
caroline:~>

4.2. Formatting strings
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Important

All data printed on the screen have to be character data. But values can have different types. Therefore
they have to be transformed into strings beforehand. This transformation is handled by theprint
statement.

It is possible to control this transformation when a specific format is needed. In the examples above, the float
value of the gc calculation is written with lots of digits following the dot which are not very significant. The next
example shows a more reasonable output:

>>> print "%.3f" % gc
0.432
>>> print "%3.1f %%" % (gc*100)
43.2 %
>>> print "the gc percentage of dna: %10s... is: %4.1f %%." % (dna, gc*100)
the gc percentage of dna: ATGCAGTGCA... is: 43.2 %

Figure 4.1 shows how to interpret the example above. The%(modulo) operator can be used to format strings. It
is preceded by the formatting template and followed by a comma separated list of values enclosed in parentheses.
These values replace the formatting place holders in the template string. A place holder starts with a % followed
by some modifiers and a character indicating the type of the value. There has to be the same number of values and
place holders.
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Figure 4.1. Interpretation of formatting templates
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Table 4.1 provides the characters that you can use in the formatting template and Table 4.2 gives the modifiers of
the formatting character.

Important

Remember that the type of a formatting result is a string and no more the type of the input value.

>>> "%.1f" % (gc*100)
’43.2’
>>> res = "%.1f" % (gc*100)
>>> at = 100 - res
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: unsupported operand type(s) for -: ’int’ and ’str’
>>> res
’43.2’
>>>

Table 4.1. String formatting: Conversion characters
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Formatting character Output Example Result
d,i decimal or long integer "%d" % 10 ’10’
o,x octal/hexadecimal integer"%o" % 10 ’12’
f,e,E normal, ’E’ notation of

floating point numbers
"%e" % 10.0 ’1.000000e+01’

s strings or any object that
has astr() method

"%s" % [1, 2, 3] ’[1, 2, 3]’

r string, use therepr()
function of the object

"%r" % [1, 2, 3] ’[1, 2, 3]’

% literal %

Table 4.2. String formatting: Modifiers

Modifier Action Example Result
name in parentheses selects the key name in a

mapping object
"%(num)d %(str)s"
% { ’num’:1,
’str’:’dna’}

’1 dna’

-,+ left, right alignment "%-10s" % "dna" ’dna_______’
0 zero filled string "%04i" % 10 ’0010’
number minimum field width "%10s" % "dna" ’_______dna’
. number precision "%4.2f" % 10.1 ’10.10’

4.3. Input
As you can print results on the screen, you can read data from the keyboard which is the standard input device.
Python provides theraw_input function for that, which is used as follows:

>>> nb = raw_input("Enter a number, please:")
Enter a number, please:12

The prompt argument is optional and the input has to be terminated by a return.

Important

raw_input always returns a string, even if you entered a number. Therefore you have to convert
the string input by yourself into whatever you need. Table 4.3 gives an overview of all possible type
conversion function.

>>> nb
’12’
>>> type(nb)
<type ’str’>
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>>> nb = int(nb)
>>> nb
12
>>> type(nb)
<type ’int’>

Notice that a user can enter whatever he wants. So, the input is probably not what you want, and the type
conversion can therefore fail. It is careful to test before converting input strings.

>>> nb = raw_input("Please enter a number:")
Please enter a number:toto
>>> nb
’toto’
>>> int(nb)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: invalid literal for int(): toto

The following function controls the input:

def read_number():
while 1:

nb = raw_input("Please enter a number:")
try:

nbconv = int(nb)
except:

print nb, "is not a number."
continue

else:
break

return nb

and produces the following output:

>>> read_number()
Please enter a number:toto
toto is not a number.
Please enter a number:12
’12’

Table 4.3. Type conversion functions

Function Description
int(x [,base]) convertsx to an integer
long(x [,base]) convertsx to a long integer
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float(x) convertsx to a floating-point number
complex(real [,imag]) creates a complex number
str(x) convertsx to a string representation
repr(x) convertsx to an expression string
eval(str) evaluatesstr and returns an object
tuple(s) converts a sequence object to a tuple
list(s) converts a sequence object to a list
chr(x) converts an integer to a character
unichr(x) converts an integer to a Unicode character
ord(c) converts a character to its integer value
hex(x) converts an integer to a hexadecimal string
oct(x) converts an integer to an octal string
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5.1. Executing code from a file
Until now we have only workedinteractivelyduring aninterpreter session. But each time we leave our session all
definitions made are lost, and we have to re-enter them again in the next session of the interpreter whenever we
need them. This is not very convenient. To avoid that, you can put your code in a file and then pass the file to the
Python interpreter. Here is an example:

Example 5.1. Executing code from a file

Take the code for the cds translation as example and put it in a file namedgc.py :

from string import *

cds = """atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaa
tttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtg
ctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggc
ccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatca
tcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacattt
attgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatac
gctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtg
ggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggag
gaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaac
gcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatg
tgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagttt
caggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcacta
tgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaac
cgttttatcgggcggggtaa""".replace("\n","")

gc = float(count(cds, ’g’) + count(cds, ’c’))/ len(cds)

print gc

and now pass this file to the interpreter:

caroline:~/python_cours> python gc.py
0.54460093896713613

Tip

You can name your file as you like. However, there is a convention for files containing python code to
have apy extension.

25



Chapter 5. Program execution

You can also make your file executable if you put the following line at the beginning of your file, indicating that
this file has to be executed with thePython interpreter:

#! /usr/local/bin/python

(Don’t forget to set thex execution bit under UNIX system.) Now you can execute your file:

caroline:~/python_cours> ./gc.py
0.54460093896713613

This will automatically call thePython interpreter and execute all the code in your file.

You can also load the code of a file in a interactive interpreter session with the-i option:

caroline:~/python_cours> python -i gc.py
0.54460093896713613
>>>

This will start the interpreter, execute all the code in your file and than give you aPython prompt to continue:

>>> cds
’atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaatttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtgctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggcccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatcatcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacatttattgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatacgctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtgggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggaggaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaacgcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatgtgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagtttcaggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcactatgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaaccgttttatcgggcggggtaa’

>>>cds="atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaatttcgggtgccgacctgacgcgcccgtt"

>>>cds
’atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaatttcgggtgccgacctgacgcgcccgtt’
>>>gc
0.54460093896713613

Important

It is important to remember that thePython interpreter executes codefrom top to bottom, this is also true
for code in a file. So, pay attention todefinethings before youusethem.

Exercise 5.1. Execute code from a file

Take all expressions that we have written so far and put them in a file.
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Important

Notice that you have to ask explicitly for printing a result when you execute some code from a file, while
an interactiveinterpreter session the result of the execution of a statement is printed automatically. So to
view the result of thetranslate function in the code above, theprint statement is necessary in the
file version, whereas during aninteractiveinterpreter session we have never written it.

5.2. Interpreter and Compiler
Let’s introduce at this point some concepts ofexecutionof programs written inhigh level programming languages.
As we have already seen, the only language that a computer can understand is the so calledmachine language.
These languages are composed of a set of basic operations whose execution is implemented in the hardware of
the processor. We have also seen that high level programming languages provide a machine-independent level
of abstraction that is higher than the machine language. Therefore, they are more adapted to a human-machine
interaction. But this also implies that there is a sort of translator between the high level programming language
and the machine languages. There exists two sorts oftranslators:

Interpreter

An Interpreter is aprogramthat implements or simulates avirtual machineusing the base set of instructions of
aprogramming languageas itsmachine language.

You can also think of anInterpreter as aprogramthat implements a library containing the implementation of the
basic instruction set of aprogramming languagein machine language.

An Interpreter reads the statements of a program, analyzes them and then executes them on the virtual machine
or calls the corresponding instructions of the library.

Interactive interpreter session

During aninteractiveinterpreter session the statements are not only read, analyzed and executed but the result of
theevaluation of an expressionis alsoprinted. This is also called aREAD - EVAL - PRINT loop.

Important

Pay attention, theREAD - EVAL - PRINTloop is only entered in aninteractivesession. If you ask the
interpreterto execute code in a file, results of expression evaluationsare notprinted. You have to do this
by yourself.

Compiler

A Compiler is a program that translates code of aprogramming languagein machine code, also calledobject
code. The object code can be executed directly on the machine where it was compiled.
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Figure 5.1 compares the usage of interpreters and compilers.

Figure 5.1. Comparison of compiled and interpreted code

Compiler

Interpreter

processor
source code

virtual machine

So using acompilerseparatestranslationandexecutionof a program. In contrast of aninterpretedprogram the
source codeis translated only once.

The object codeis machine-dependentmeaning that thecompiledprogram can only be executed on a machine
for which it has been compiled, whereas aninterpretedprogram is notmachine-dependentbecause themachine-
dependentpart is in the interpreter itself.

Figure 5.2 illustrates another concept of program execution that tries to combine the advantage of more effective
execution of compiled code and the advantage of machine-independence of interpreted code. This concept is used
by theJAVA programming language for example and in a more subtle way byPython.
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Figure 5.2. Execution of byte compiled code
source code

Compiler

bytecode

Interpreter

virtual machine

processor

In this case thesource codeis translated by acompiler in a sort ofobject code, also calledbyte codethat is
then executed by aninterpreter implementing avirtual machineusing thisbyte code. The execution of thebyte
codeis faster than the interpretation of thesource code, because the major part of the analysis and verification
of the source code is done during the compilation step. But thebyte codeis still machine-independentbecause
the machine-dependent part is implemented in thevirtual machine. We will see later how this concept is used in
Python (Section 15.1).
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Chapter 6. Strings
So far we have seen a lot about strings. Before giving a summary about this data type, let us introduce a new
syntax feature.

6.1. Values as objects
We have seen thatstringshave avalue. But Pythonvaluesare more than that. They areobjects.

Object

Objectsare things that know more than theirvalues. In particular, you can ask them to perform specialized tasks
that only they can do.

Up to now we have used some special functions handling string data available to us by the up to nowmagic
statementfrom string import * . But stringsthemselves know how to execute all of them and even more.
Look at this:

>>> motif = "gaattc"
>>> motif.upper()
’GAATTC’
>>> motif
’gaattc’
>>> motif.isalpha()
1
>>> motif.count(’n’)
0

>>> motif = ’GAATTC_’
>>> motif + motif
’GAATTC_GAATTC_’
>>> motif * 3
’GAATTC_GAATTC_GAATTC_’

At the first glance this looks a little bit strange, but you can read the. (dot) operator as: “ask objectmotif to do
something” as: transformmotif in an uppercase string (upper ), ask whether it contains only letters (isalpha )
or count the number of “n” characters.

Objects as namespaces.How does it work? All objects have their own namespace containing all variable and
function names that are defined for that object. As already describeb in Section 2.4 you can see all names defined
for an object by using thedir function:

>>> dir(motif)
[’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__eq__’, ’__ge__’,
’__getattribute__’, ’__getitem__’, ’__getslice__’, ’__gt__’, ’__hash__’,
’__init__’, ’__le__’, ’__len__’, ’__lt__’, ’__mul__’, ’__ne__’, ’__new__’,
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’__reduce__’, ’__repr__’, ’__rmul__’, ’__setattr__’, ’__str__’, ’capitalize’,
’center’, ’count’, ’decode’, ’encode’, ’endswith’, ’expandtabs’, ’find’,

’index’, ’isalnum’, ’isalpha’, ’isdigit’, ’islower’, ’isspace’, ’istitle’,
’isupper’, ’join’, ’ljust’, ’lower’, ’lstrip’, ’replace’, ’rfind’, ’rindex’,
’rjust’, ’rstrip’, ’split’, ’splitlines’, ’startswith’, ’strip’, ’swapcase’,
’title’, ’translate’, ’upper’]

The dot operator is used to access this namespace. It will look up in the namespace of the object for the name
following the dot operator.

>>> motif.__class__
<type ’str’>
>>> motif.replace(’a’, ’A’)
’gAAttc’

Variables and functions defined in object namespaces are calledattributesandmethodsof the object.

Attribute

An attribute is avariabledefined in a namespace of an object, which can only be accessed via the object himself.

Method

Methodsarefunctionsdefined in a namespace of anobject.

This is just a little introduction to objects making it possible to use theobject syntaxfor the basic types in Python.
We will give further explanation intoobject-oriented programmingin Chapter 17.

6.2. Working with strings

Strings

Stringsare sequences orordered collectionsof characters.

You can write them in Python using quotes, double quotes, triple quotes or triple double quotes. The triple quote
notation permits to write strings spanning multiple lines with keeping any line feed.

>>> ’ATGCA’
’ATGCA’
>>> "ATGCA"
’ATGCA’
>>> """ATGATA
... AGAGA"""
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’ATGATA\nAGAGA’

The first thing that we would sum up is how to extract characters or substrings . Characters are accessible using
their position in the string which has to be enclosed into brackets following the string. The position number can
be positive or negative, which means starting at the beginning or the end of the string. Substrings are extracted by
providing an interval of the start and end position separated by a colon. Both positions are optional which means
either to start at the beginning of the string or to extract the substring until the end. When accessing characters, it
is forbidden to access position that does not exist, whereas during substring extraction, the longest possible string
is extracted.

>>> motif = ’GAATTC’
>>> motif[0]
’G’
>>> motif[-1]
’C’

>>> motif[0:3]
’GAA’
>>> motif[1:3]
’AA’
>>> motif[:3]
’GAA’
>>> motif[3:]
’TTC’
>>> motif[3:6]
’TTC’
>>> motif[3:-1]
’TT’
>>> motif[-3:-1]
’TT’
>>> motif[:]
’GAATTC’

>>> motif[100]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: string index out of range
>>> motif[3:100]
’TTC’
>>> motif[3:2]
”

Caution

Figure 6.1 compares positive and negative indices. Be careful, forward string indices starts always with
0, whereas backward string indices starts with -1.
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Figure 6.1. String indices
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Caution

It is also important to notice that the character at the end position during a substring extraction is never
included in the extracted substring.

Warning

Strings are immutable in Python. This means you can neither change characters or substrings. You have
always to create a new copy of the string.

>>> motif[1] = ’n’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment

>>> motif[:1] + ’n’ + motif[2:]
’GnATTC’

A list of all other methods, function and operators and their action on string objects are summarized in Table 6.1
and Table 6.2).

Table 6.1. String methods, operators and builtin functions

Method, Operator, Function Description
s + t Concatenation
s * 3 Repetition
len(s) Returns the length of s
min(s), max(s) Returns the “smallest”, “largest” character of s, depend-

ing on their position in the ASCII code
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s.capitalize() Capitalize the first character of s
s.center([width]) Centers s in a field of length width
s.count(sub [,start [, end]]) Counts occurrences ofsubbetweenstart andend
s.encode([encoding [, errors]]) Encode s usingencodingas code anderror
s.expandtabs([tabsize]) Expands tabs
s.find(sub [, start [, end]]) Finds the first occurrence ofsubbetweenstart andend
s.index(sub [,start [, end]]) same asfind but raise an exception if no occurrence is

found
s.join(words) Joins the list ofwordswith s as delimiter
s.ljust(width) Left align s in a string of lengthwidth
s.lower() Returns a lowercase version of s
s.lstrip() Removes all leading whitespace characters of s
s.replace(old, new [, maxrep]) Replace maximalmaxrepversions of substringold with

substringnew
s.rfind(sub [, start [, end]]) Finds the last occurrence of substringsubbetweenstart

andend
s.rindex(sub [,start [, end]]) Same asrfind but raise an exception ifsubdoes not

exists

s.rjust(width) Right-align s in a string of lengthwidth
s.rstrip() Removes trailing whitespace characters
s.split([sep [, maxsplit]])) Split s into maximalmaxsplitwords usingsepas separa-

tor (default whitespace)
s.splitlines([keepends]) Split s into lines, ifkeependsis 1 keep the trailing newline
s.strip() Removes trailing and leading whitespace characters
s.swapcase() Returns a copy of s with lowercase letters turn into up-

percase and vice versa
s.title() Returns a title-case version of s (all words capitalized)
s.translate(table [, delchars]) Translate s using translation tabletable and removing

characters in stringdelchars
s.upper() Returns an uppercase version of s

Table 6.2. Boolean methods and operators on strings

Method or operator Description
s < <=, >=, > t Checks if s appears before, before or at the same point,

after or at the same point, after than t in an alphabetically
sorted dictionary

s < <= t >=, > r Checks if r appears between s and t in an alphabetically
sorted dictionary

s ==, !=, is, not is t Checks the identity or difference of s and t
c in s, c not in s Checks if characterc appears in s
s.endswith(suffix [,start [,end]]) Checks if s ends withsuffix
s.isalnum() Checks whether all characters are alphanumeric
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s.isalpha() Checks whether all characters are alphabetic
s.isdigit() Checks whether all characters are digits
s.islower() Checks whether all characters are lowercase
s.isspace() Checks whether all characters are whitespace
s.istitle() Checks whether s is title-case meaning all words are

capitalized
s.isupper()
s.startswith(prefix [, start [,
end]]))

Checks whether s starts withprefixbetweenstartandend
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Chapter 7. Branching and Decisions

7.1. Conditional execution
Sometimes the continuation of a program depends on acondition. We would either execute a part of the program
if this condition is fulfilled or adapt the behavior of the program depending on the truth value of the condition.

Branching or conditional statements

Branching is a feature provided by programming languages that makes it possible to execute a sequence of
statements among several possibilities.

The simplest case of a conditional statement can be expressed by theif statement.

>>> from string import *

>>> seq = ’ATGAnnATG’
>>> if ’n’ in seq:
... print "sequence contains undefined bases" ❶
... nb = count(seq, ’n’)
sequence contains undefined bases

Figure 7.1 shows a general schema of a simple conditional statement.

Figure 7.1. Flow of execution of a simple condition

condition

if block

only if condition is true
block of statements executed

true

false

condition :if

The if statement has to be followed by acondition. Then ablock is opened by a colon. This block contains the
sequenceof statements that has to be executed if theconditionis fulfilled. Figure 7.3 and Figure 7.2 highlight the
structural parts of theif statement.
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Figure 7.2. If statement

>>>
. . .

. . .     nb = count(seq, ’n’)
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    print "sequence contains undefined bases"

sequence contains undefined bases

sequence of instructions
ONLY executed if the condition is true

body of the if statement

:

condition

Figure 7.3. Block structure of the if statement

:>>>
. . .

. . .

if ’n’ in seq

    nb = count(seq, ’n’)
    print "sequence contains undefined bases"

sequence contains undefined bases

header line

block inititiation

body of the if statement

block of code
same indentation to

indicate a block 

7.2. Conditions and Boolean expressions
Theconditionin the if statement has to be aboolean expression.

Conditions or Boolean expressions

Conditional or boolean expressionsareexpressionsthat are eithertrueor false.

Here are some examples of simpleboolean expressionsor conditions:

>>> 1 < 0
False
>>> 1 > 0
True
>>> 1 == 0
False
>>> ’n’ in ’ATGCGTAnAGTA’
True
>>> ’A’ > ’C’
False
>>> ’AG’ < ’AA’
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False
>>> ’AG’ != ’AC’
True
>>> len(’ATGACGA’) >= 10
False

In Python the valuetrue is represented by1 and the valuefalseby 0.

Table 7.1 lists allboolean operatorsand their action on strings and numbers.

Table 7.1. Boolean operators

Operator Action on strings Action on numbers
<, <=, >=, > alphabetically sorted, lower/lower or

equal/greater or equal/greater than
lower/lower or equal/greater or
equal/greater than

==, !=, is, is not a identity identity
in, not in membership -

aWe will explain the difference between these two identity operators later (Section 11.2).

Important

Do not confuse the assignment sign= with the logical operator==. The second one is used to compare
two things and check their equality whereas the first one is used to bound values to variables. Python
does not accept an assignment as a condition but there are other programming languages that use the
same syntax for these two statements, but they do not warn when you use= instead of==.

7.3. Logical operators
The three logical operatorsnot , and andor enable you to compose boolean expressions and by this way to
construct more complex conditions. Here are some examples:

>>> seq = ’ATGCnATG’
>>> ’n’ in seq or ’N’ in seq
True
>>> ’A’ in seq and ’C’ in seq
True
>>> ’n’ not in seq
False
>>> len(seq) > 100 and ’n’ not in seq
False
>>> not len(seq) > 100
True

39



Chapter 7. Branching and Decisions

Caution

Theor operation is not anexclusiveor as it is sometimes used in the current languages. Anor expression
is also true if both subexpressions are true.

>>> seq = ’ATGCnATG’
>>> ’A’ in seq or ’C’ in seq
True

7.4. Alternative execution
If the condition of aif statement is not fulfilled no statement is executed.

>>> seq = ’ATGACGATAG’
>>> if ’n’ in seq:

print "sequence contains undefined characters"
>>>

An alternativesequence of statements, that will be executed if theconditionis not fulfilled, can be specified with
theelse statement.

>>> seq = ’ATGACGATAG’
>>> if ’n’ in seq:
... print "sequence contains undefined bases"
... else:

print "sequence contains only defined bases"
sequence contains only defined bases

Here theif andelse are followed by ablockcontaining the statements to execute depending on the truth value
of thecondition. In this case exactly one of them is executed, which is illustrated in Figure 7.4
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Figure 7.4. Flow of execution of an alternative condition

condition

else block

true false
if condition:

if block

only if the condition is false
block of statements executed

else :
only if condition is true
block of statements executed

7.5. Chained conditional execution
In Python, you can specify more than one alternative:

>>> seq = ’vATGCAnATG’
>>> base = seq[0]
>>> base
v

>>> if base in ’ATGC’:
... print "exact nucleotid"
... elif base in ’bdhkmnrsuvwxy’:
... print "ambiguous nucleotid"
... else:
... print "not a nucleotid"
...
ambiguous nucleotid

The elif statement is used to give an alternative condition. What happens when this is executed? The
conditions are evaluated from top to bottom. In our example withbase = ’v’ as first condition, theif
conditionbase in ’ATGC’ is false, so the next condition, that of theelif statement is evaluated.base
in ’bdhkmnrsuvwxy’ is true, so the block of statements of this clause is executed andambiguous
nucleotid is printed. Then the evaluation of the condition is stopped and the flow of execution continues
with the statement following theif-elif-else construction.

Multiple alternative conditions

Multiple alternative conditionsare conditions that are tested from top to bottom. The clause of statements for
the first alternative that is evaluated as true is executed. So there isexactlyone alternative that is executed, even
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if there are more than one that are true. In this case the clause of thefirst true condition encountered is chosen.
Figure 7.5 illustrates this.

Figure 7.5. Multiple alternatives or Chained conditions

else:
block of statements executed
only if all conditions are false

if block else blockelif block

condition falsetrue

second
condition

falsetrue

only if  second_condition is true
and condition is false

block of statements executed

elifsecond_condition :
only if condition is true
block of statements executed

if :condition

Theelse statement is optional. But it is more safe to catch the case where all of the given conditions are false.

Exercise 7.1. Chained conditions

Theelif statement only facilitates the writing and legibility of multiple alternative conditions. How would you
write a multiple condition without this statement (Solution 7.1)?

Hint: See the scheme of Figure 7.5.

7.6. Nested conditions
However, construction with multiple alternatives are sometimes not sufficient and you need to nest condition like
this:

>>> primerLen = len(primer)
>>> primerGC = float(count(primer, ’g’) + count(primer, ’c’))/ primerLen

>>> if primerGC > 50:
... if primerLen > 20:
... PCRprogram = 1
... else:
... PCRprogram = 2
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... else:

... PCRprogram = 3

Exercise 7.2. Nested condition

Why is it impossible to write the above example as chained condition?

Figure 7.6 shows the scheme ofnested conditions.

Figure 7.6. Nested conditions

if condition:

else:

else:

else:

if second_condition

if third_condition :

block of statements executed
only if condition and
second_condition are true

block of statements executed
only if condition is true

block of statements executed
only if condition is false and
third_condition is true

block of statements executed
only if condition is false and
third_condition is false

:

Why are they joint here first?

if_if block

second
condition

falsetrue

condition falsetrue

falsetrue

else_if blockif_else block

condition
third

else_else 
block

What is known about the second condition here?

Sometimes you can simplify nested conditions by constructing more complex conditions withboolean operators.

>>> primerLen = len(primer)
>>> primerGC = float(count(primer, ’g’) + count(primer, ’c’))/ primerLen

>>> if primerGC > 50:
... if primerLen > 20:
... PCRprogram = 1
... else:
... PCRprogram = 2
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can be expressed as:

>>> if primerGC > 50 and primerLen > 20:
... PCRprogram = 1
... else:
... PCRprogram = 2

Caution

Even if the second version is easier to read, be careful and always check whether the complex condition
you have written, is what you really want. Such errors are called semantic error. They can not be detected
by the interpreter because the syntax of the program is correct, even if it is not necessarily what you want
to compute.

7.7. Solutions

Solution 7.1. Chained conditions

Exercise 7.1

Figure 7.7. Multiple alternatives without elif

if condition:
block of statements executed
only if condition is true

block of statements executed

elifsecond_condition :

block of statements executed

else:

only if the second condition
is true

only if all conditions are false

if condition:
block of statements executed
only if condition is true

else:
if second_condition:

block of statements executed
only if all conditions are false

else:

block of statements executed
only if the second condition
is true
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Chapter 8. Defining Functions

8.1. Defining Functions
In Section 3.3 we have learnt how to apply or call functions. So let’s remember the example calculating the
GC-percentage of a DNA sequence.

>>> float(count(cds, ’G’) + count(cds, ’C’)) / len(cds)

This calculates the gc percentage of the specific DNA sequencecds , but we can use the same formula to calculate
the gc percentage of other DNA sequences. The only thing to do is to replacecds by the new DNA sequence in
the formula. But it is not very convenient to remember the formula and retype it all the time. It would be much
easier to type the following instead.

>>> gc(’ATGCAT’)
0.33333333333333331
>>> gc(cds)
0.54460093896713613

The only thing we have to remember is the name of the newfunctionand its use.

Abstraction

The possibility to define such newfunction executing tasks specified by yourself, is anabstraction feature,
provided by all high level programming languages.

Important

It is also important to notice that functions have to be defined before they are called. You can not use
something that is not defined.

Here is the syntax of such a new definition in Python:

>>> from string import *

>>> def gc(seq):
... return float(count(seq, ’G’) + count(seq, ’C’)) / len(seq)

Let’s have a closer look at this definition. Figure 8.1 illustrates the structure of a function definition.
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Figure 8.1. Function definitions

during a function call the parameter

statement indicating a new function

that has to be followed by the function name
and a comma separated list of parameters

and a colon indication 
the start of a new block

statement used to return back a result indentation
defining a
block

of a calculation

definition in Python 

:>>>  def gc(seq)
. . .          return float(count(seq, ’G’) + count(seq, ’C’)) / len(seq)

second
prompt
indicating
a new
block

its argument value
(a sort of place holder) is replaced by

def andreturn arebasic instructions.

Basic instruction

Basic instructionsare statements that define the language rules and the semantic of Python. They constitute the
basic set of instructions of Python. Eachbasic instructionhas its own syntax that you have to learn in order to
master the programming language.

The return basic instruction is used to return the result of a function back, in our example the value of the GC
percentage of the specified DNA sequence.

Thedef basic instruction indicates to Python that a function definition follows. It has to be followed by the new
function name and a comma separated list of parameter names enclosed into parentheses.

Parameter

Parametersarevariable names. When the function is called they are bound in the same order to the arguments
given.

The body of a function contains the piece of code needed to execute the subtask of the function. In the example
above, the body contains only thereturn statement. Here is a more complex example that excludes ambiguous
bases from the GC percentage calculation.

>>> from string import *

>>> def gc(seq):
... nbases = count(seq, ’N’)
... gcpercent = float(count(seq, ’G’) + count(seq, ’C’)) / (len(seq) - nbases)
... return gcpercent

In this example the body of the function contains three instructions (2 assignments and the return statement). The
body of a function follows the definition line and is written as an indentedblock initiated by a colon.
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Block

Blocksarestructure elementsof a program, that are used to group instructions. They are initiated by acolonand
are separated from the rest of the code by the sameindentationstep in Python.

In our example, the function body is written as ablock to separate it from the rest of the program. The Python
interpreter used it to detect where the function body starts and ends.

Important

In other programming languages special words or characters are used to indicate the begin and the end of
blocks and the indentation is only used to make the code readable for humans. In Python the indentation
is used explicitly to do this. So in the above example of a function definition the end of the body is
detected when the next line starts without any indentation step. This is also illustrated in Figure 8.2.

Example 8.1. More complex function definition

>>> from string import *

>>> def gc(seq):
... nbases = count(seq, ’N’)
... gcpercent = float(count(seq, ’G’) + count(seq, ’C’)) / \

(len(seq) - nbases)
... return gcpercent
...
>>> gc(’ATGCN’)
0.5

Figure 8.2. Blocks and indentation

    nbases = count(seq, ’N’)

    return gcpercent

gc(’ATGCN’)

def gc(seq)>>>

>>>

. . .

. . .

. . .

. . .

0.5

definition line

block inititiation

sequence of instructions

block of codefunction body
same indentation to

indicate a block 

:

    gcpercent = float(count(seq, ’G’) + count(seq, ’C’)) / (len(seq)−nbases)
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8.2. Parameters and Arguments or the difference between a
function definition and a function call

As we have already said, functions are named sequences of statements that execute a specific task. Afunction
definitionis the construction that gives a name to this special sequence of statements. Whereas afunction callis
the execution of this sequence of statements. We have also seen that the execution can be parameterized. This
means, that there are special variables, theparameters, in the function which are bound to values, thearguments,
during the function call.

Flow of execution. Some precision about theflow of execution. If you call a function the statements of the
function body are executed. The execution of the current sequence of statements areis interrupted and theflow of
executionjumps to the sequence of statements named by the function. The function statements are executed and
then theflow of executioncontinues with the sequence from where the function was called.

Caution

The statements in the function body are only executed at a function call, so all errors in this piece of code
are only reported at the execution.

Now if we remember that within a function you can call other functions, the above scheme becomes rapidly
disturbing, but Python keeps a track from where a function is called and there is only one statement at a time that
is executed. You can visualize this using astack diagramof the function calls.

Stack

A stackis an ordered set of things which can be accessed in two ways. You can put things on the top of the stack,
and only take back the thing on the top of the stack. A common example is a stack of plates (it is hard to get a
plate from within the stack). A stack is sometimes called aLIFO an abbreviation oflast-in-first-out.

So what Python does is to handle a stack of function calls. If a function is called, Python puts the position from
where it is called on the stack, executes the function and when the function execution is finished Python gets the
position to continue back from the stack. Figure 8.3 shows the stack diagram of the execution of thegc function
(Example 8.1).
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Figure 8.3. Stack diagram of function calls
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8.3. Functions and namespaces
Even if it is confusing at the beginning, thedna variable in the function call is not the same as thedna parameter
of thegc function. During the function call the global variable is evaluated and its value’ATGACT’ is assigned
to the parameterdna of thegc function.

How does Python distinguish the two variables? It can do so, because they are not in the same namespace.
All functions have two associated namespaces, alocal and aglobal namespace. Theglobal namespace is the
namespace where the function is defined and thelocal namespace is a namespace created at the function definition
where parameters are defined. The local namespace contains also alllocal variables. Local variablesare variables
that are bound to value in the function body. When a function is defined, its source code is analyzed and all used
names are sorted in the two namespaces.

If a variable name is searched during a function execution, Python looks in the local namespace for local variables
and in the global namespace for global variables. If a global variable is not found there, the builtin namespace is
searched. If it is not found there, an error is produced.

builtin namespace

Thebuiltin namespaceis anamespacethat contains all predefined function of Python.

You can ask Python which names are defined in the global and the local namespace using the functions
globals() andlocals() .

>>> from string import *
>>> def gc(seq):
... nbases = count(seq, ’N’)
... gcpercent = float(count(seq, ’G’) + count(seq, ’C’)) / (len(seq) - nbases)
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... print "local namespace:", locals()

... print "global namespace:", globals()

... print "names in the current namespace:", dir()

... return gcpercent

...
>>> seq = ’ATGACGATAGGAGANNTATAGAN’

>>> gc(seq)
local namespace: {’gcpercent’: 0.34999999999999998, ’nbases’: 3,
’seq’: ’ATGACGATAGGAGANNTATAGAN’}
global namespace: {’ascii_lowercase’: ’abcdefghijklmnopqrstuvwxyz’,

’upper’: <function upper at 0x1623f0>, ’punctuation’: ’"!#$%&\’()*+,-./:;<=>?@[\\]^_‘{|}~’,

’letters’: ’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
’seq’: ’ATGACGATAGGAGANNTATAGAN’, ’lstrip’: <function lstrip at 0x160cf0>,
’uppercase’: ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
’ascii_letters’: ’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’,
’replace’: <function replace at 0x160b90>, ’capwords’: <function capwords at 0x160b10>,

’index_error’: <class exceptions.ValueError at 0x119700>,
’expandtabs’: <function expandtabs at 0x160a50>, ’strip’: <function strip at 0x160cb0>,

’ascii_uppercase’: ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ’find’: <function find at 0x160810>,

’gc’: <function gc at 0x160b50>, ’rjust’: <function rjust at 0x160990>,
’ljust’: <function ljust at 0x160950>, ’whitespace’: ’\t\n\x0b\x0c\r ’,
’rindex’: <function rindex at 0x1625a0>, ’capitalize’: <function capitalize at 0x160ad0>,

’atol_error’: <class exceptions.ValueError at 0x119700>, ’octdigits’: ’01234567’,
’lower’: <function lower at 0x1623b0>, ’splitfields’: <function split at 0x160d70>,
’split’: <function split at 0x160d70>, ’rstrip’: <function rstrip at 0x160d30>,
’translate’: <function translate at 0x160a90>,
’__doc__’: None,
’printable’: ’0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\’()*+,-./:;<=>?@[\\]^_‘{|}~ \t\n\r\x0b\x0c’,

’digits’: ’0123456789’, ’joinfields’: <function join at 0x162520>,
’index’: <function index at 0x162560>,
’__builtins__’: <module ’__builtin__’ (built-in)>,
’swapcase’: <function swapcase at 0x162430>,
’atof_error’: <class exceptions.ValueError at 0x119700>,
’atoi’: <function atoi at 0x1608d0>, ’hexdigits’: ’0123456789abcdefABCDEF’,
’atol’: <function atol at 0x160910>, ’__name__’: ’__main__’,
’atof’: <function atof at 0x160890>, ’count’: <function count at 0x1625e0>,
’lowercase’: ’abcdefghijklmnopqrstuvwxyz’, ’join’: <function join at 0x162520>,
’center’: <function center at 0x1609d0>, ’rfind’: <function rfind at 0x160850>,
’atoi_error’: <class exceptions.ValueError at 0x119700>,
’maketrans’: <built-in function maketrans>, ’zfill’: <function zfill at 0x160a10>}
names in the current namespace: [’gcpercent’, ’nbases’, ’seq’]
0.34999999999999998
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Thedir function shows all the names defined in the current namespace.

>>> from string import *

>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’ascii_letters’, ’ascii_lowercase’,
’ascii_uppercase’, ’atof’, ’atof_error’, ’atoi’, ’atoi_error’, ’atol’,
’atol_error’, ’capitalize’, ’capwords’, ’center’, ’count’, ’digits’,
’expandtabs’, ’find’, ’gc’, ’hexdigits’, ’index’, ’index_error’, ’join’,
’joinfields’, ’letters’, ’ljust’, ’lower’, ’lowercase’, ’lstrip’, ’maketrans’,
’octdigits’, ’printable’, ’punctuation’, ’replace’, ’rfind’, ’rindex’, ’rjust’,
’rstrip’, ’seq’, ’split’, ’splitfields’, ’strip’, ’swapcase’, ’translate’,
’upper’, ’uppercase’, ’whitespace’, ’zfill’]

8.4. Boolean functions
Whenever a condition is too complex, you can write aboolean function.

Boolean function

Boolean functionsarefunctionthat return truth values (in Python either0 or 1).

It is good style to give them a name that indicates its nature, often the function name starts withis .

Here is an example that tests if a character is a valid amino acid:

>>> from string import *

>>> def isAminoAcid(aa):
... AA = upper(aa)
... if AA < ’A’ or AA > ’Z’:
... return 0
... if AA in ’JOU’:
... return 0
... return 1

you can also write it as follow:

>>> from string import *

>>> def isAminoAcid(aa):
... AA = upper(aa)
... if AA < ’A’:
... ok = 0
... elif AA > ’Z’:
... ok = 0
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... elif AA in ’JOU’:

... ok = 0

... else:

... ok = 1

... return ok

or using boolean operators:

Example 8.2. Function to check whether a character is a valid amino acid

>>> def isAminoAcid(aa):
... return (’A’ <= aa <= ’Z’ or ’a’ <= aa <= ’z’) and aa not in ’jouJOU’

Using this function makes your code easier to understand because the function name expresses what you want to
test:

>>> prot = ’ATGAFDWDWDAWDAQW’
>>> oneaa = prot[0]

>>> if isAminoAcid(oneaa):
... print ’ok’
... else:

print ’not a valid amino acid’
ok
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Chapter 9. Collections

9.1. Datatypes for collections
In the proceeding chapter we have seen thatstringscan be interpreted ascollections of characters.But they are
a very restricted sort of collection, you can only put characters in a string and a string is always ordered. But we
need often to handle collections of all sorts of objects and sometimes these collections are not even homogeneous,
meaning that they may contain objects of different types. Python provides several predefineddata types that
can manage such collections. The two most used structures are calledLists andDictionaries. Both can handle
collections of different sorts of objects, but what are their differences?

List

Listsaremutable ordered collectionsof objects of different sorts. The objects are accessible using their position
in theordered collection.

Dictionary

Dictionariesaremutable unordered collectionswhich may contain objects of different sorts. The objects can be
accessed using akey.

Here are some examples comparing a list version of a collection of enzyme’s pattern and a dictionary version of
the same collection. Lists are created using a comma separated list of all elements enclosed into brackets, whereas
dictionaries are enclosed into braces and contain a comma separated list of key-value pairs, each separated by a
colon.

>>> patternList = [ ’gaattc’, ’ggatcc’, ’aagctt’ ]
>>> patternList
[’gaattc’, ’ggatcc’, ’aagctt’]

>>> patternDict = { ’EcoRI’ : ’gaattc’, ’BamHI’ : ’ggatcc’, ’HindIII’ : ’aagctt’ }
>>> patternDict
{ ’EcoRI’ : ’gaattc’, ’BamHI’ : ’ggatcc’, ’HindIII’ : ’aagctt’ }

To access the elements we use the position in the list and the key for the dictionary.

Important

List indices have the same properties as string indices, in particular they start with 0 (remember Figure
6.1).

>>> patternList[0]
’gaattc’
>>> patternDict[’EcoRI’]
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’gaattc’

As for strings you can get the number of elements in the collection, as well as the smallest and the greatest element.

>>> len(patternList)
3
>>> len(patternDict)
3

Lists can be sliced but dictionaries cannot. Remember that dictionaries are unordered collections, so getting a
slice does not make any sense.

>>> digest = patternList[:1]
>>> digest
[’gaattc’]

You can ask whether an element is in the collection. Dictionaries have two possibilities to perform this.

>>> ’gaattc’ in patternList
1
>>> patternDict.has_key(’HindIII’)
1
>>> ’HindIII’ in patternDict
1

Unlike strings both collections are mutable. This means that you can remove, add or even change their elements.

>>> del patternList[0]
>>> patternList
[’ggatcc’, ’aagctt’]
>>> patternList[0] = ’gaattc’
>>> patternList
[’gaattc’, ’aagctt’]
>>> patternList.append(’ggattc’)
>>> patternList
[’gaattc’, ’aagctt’, ’ggattc’]
>>> del patternList[:2]
>>> patternList
[’ggattc’]

>>> del patternDict[’EcoRI’]
>>> patternDict
{’BamHI’: ’ggatcc’, ’HindIII’: ’aagctt’}
>>> patternDict[’EcoRI’] = ’gaattc’
>>> patternDict
{’BamHI’: ’ggatcc’, ’EcoRI’: ’gaattc’, ’HindIII’: ’aagctt’}
>>> patternDict[’BamHI’] =”
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>>> patternDict
{’BamHI’: ”, ’EcoRI’: ’gaattc’, ’HindIII’: ’aagctt’}

As for strings you cannot access elements that do not exist.

>>> patternList[10]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> patternDict[’ScaI’]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
KeyError: ScaI

Figure 9.1 compares different actions on collections for strings, lists and dictionaries.

Figure 9.1. Comparison some collection datatypes
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Action DictionnaryList Strings 

Membership

Remove en element

Change an element

Add an element

Access to an element

Creation

L[i]

e in L

del L[i]

L[i]=new

L.append(e)

del L[i:k]

L[i:k]=Lnew

[a, b, ..., n]

s[i]

c in s

"..."’ ’...’, "’...’"
{keya: a, keyb: b, ..., keyn:n }

Not Possible, not ordered
but, remove all D.clear()

9.2. Methods, Operators and Functions on Lists
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Table 9.1 remembers the action of builtin functions and operators on list objects and Table 9.2 summarizes all
methods of list objects.

Table 9.1. Sequence types: Operators and Functions

Operator/Function Action Action on Numbers
[ ... ], ( ... ), "
... "

creation

s + t concatenation addition
s * n repetitiona multiplication
s[i] indication
s[i:k] slice
x in s membership
x not in s
for a in s iteration
len(s) length
min(s) return smallest element
max(s) return greatest element
s[i] = x index assignment
s[i:k] = t slice assignment
del s[i] deletion

a

a Important
shallow copy (see Section 11.2)

Table 9.2. List methods
Method Operation
list(s) converts any sequence object to a list
s.append(x) append a new element
s.extend(t) concatenationa

s.count(x) count occurrences ofx
s.index(x) find smallest position wherex occurs in s
s.insert(i,x) insertx at positioni
s.pop([i]) removes i-th element and return it
s.remove(x) remove element
s.reverse() b reverse
s.sort([cmp]) b sort according to thecmp function

aequal to the+ operator but inplace
bin place operation
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Important

It is important to know whether a function or method, that is applied to amutableobjects, modifies this
object internally or whether it returns a new object containing these modifications. Look at the following
example that shows two possibilities to concatenate lists. The+ operator creates a new list whereas the
methodextend adds one list to the other:

>>> l1 = [ ’EcoRI’, ’BamHI’ ]
>>> l2 = [ ’HindIII’ ]
>>> l1
[’EcoRI’, ’BamHI’]
>>> l2
[’HindIII’]
>>> l1 + l2
[’EcoRI’, ’BamHI’, ’HindIII’]
>>> l1
[’EcoRI’, ’BamHI’]
>>> l2
[’HindIII’]
>>> l1.extend(l2)
>>> l1
[’EcoRI’, ’BamHI’, ’HindIII’]
>>> l2
[’HindIII’]

9.3. Methods, Operators and Functions on Dictionaries
Contrary to strings and lists the ordering of the elements in dictionaries does not matter. Elements are accessed by
a unique key rather than by an index number.

Important

It is important to notice thatdictionary keyshave to beuniqueandimmutable.

Table 9.3 gives an overview of the methods and operations on dictionaries.

Table 9.3. Dictionary methods and operations

Method or Operation Action
d[key] get the value of the entry with keykey in d
d[key] = val set the value of entry with keykey to val
del d[key] delete entry with keykey
d.clear() removes all entries
len(d) number of items
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d.copy() makes a shallow copya

d.has_key(key) returns 1 ifkey exists, 0 otherwise
d.keys() gives a list of all keys
d.values() gives a list of all values
d.items() returns a list of all items as tuples (key,value)
d.update(new) adds all entries of dictionarynew to d
d.get(key [, otherwise]) returns value of the entry with keykey if it exists

otherwise returnsotherwise
d.setdefaults(key [, val]) same asd.get(key) , but if key does not exists sets

d[key] to val
d.popitem() removes a random item and returns it as tuple

a

a Important
shallow copy (see Section 11.2)

9.4. What data type for which collection
We have seen so far threecollection typesin Python. Which one should you chose in your applications? Because
they all have their advantages and disadvantages making some actions easy or difficult to handle, the choice
depends on your data and on what you would do with these data. To recognizestrings is the easiest one, but
be aware if you need to change characters, since you will have to construct a new string. So a mutable ordered
collection datatype, such as a list, could be more adapted.

For list and dictionaries there are two important issues to consider:

1.Does the ordering of your collection matter?

2. Is it sufficient to access the elements by their position or do you prefer to access the collection with a more
complex, sometimes more descriptive, key rather than a number?

If you need an ordered collection you do not have any choice left, because only lists take care of the ordering.
However the way of accessing a collection is sometimes not so easy and often worth further consideration.
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Chapter 10. Repetitions

10.1. Repetitions
Sometimes you need to do the same thing several times with different data. Whereas humans make often errors
during a repetitive procedure, computers execute repetitive tasks very well.

One possibility to write repetitions is to repeat the code as often as needed, but this is neither elegant nor readable,
and above all you cannot do this if the number of repetition times is not constant or is not known beforehand.

Just as now, we have seen all that we need to do repetitive tasks.

Exercise 10.1. Repetitions

Try to find out how to perform a repetitive task, only with the statements seen so far. It is not very easy if you have
not seen this and we will discuss this later (Chapter 13).

Because repetitions are common programming tasks, high level programming languages provide special structures
and statements for this purpose. Python has two of them:for andwhile . Let us see thefor statement first.

10.2. The for loop
Verify protein sequences.Let us start with an example that checks whether all characters of a protein sequence
are valid amino acid characters. How could we do this by hand? One possibility is to start at the beginning of the
protein sequence and check each character one by one. Here is a more formal description of the algorithm:

1. for eachcharacter of the protein sequence

a. if the current character is not an amino acid

• print the invalid character

b. end if

2. end for

In Python this can be performed with thefor statement.
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The for loop

Thefor loop enables to iterate on an ordered collection of objects and to execute the same sequence of statements
for each element.

This sort of iteration is also known as atraversal, because the collection istraversedfrom left to right and a
particular task is applied to each element.

So in our example, the collection of elements is a string which we traverse with thefor loop. We also have to
specify what a valid amino acid is, because computers do not know about it. Nevertheless we have already written
a function doing this (Example 8.2).

>>> protein = "SERLSITPLGPYIGAQIJSGADLTRPLSDNQFEQLYHAVLRHQVVFLRDQAITPQQQRALA"

>>> for aa in protein:
... if not isAminoAcid(aa):
... print "protein contains unknown amino acid: ", aa
...
protein contains unknown amino acid: J

As def andif , thefor statement is also a statement containing ablock. Theheader linegives the two essential
information for the traversal. It starts withfor followed by avariable nameto which each element of the
collection is assigned during the execution of theblockof statements. The second half of theheaderindicates the
collectionin which the elements can be found. As in all functions, operations and expressions, the collection can
be specified by avalue, avariableor even acomposed expression.

Figure 10.1. The for loop

for aa in protein :

if isAminoAcid(aa):

iteration variable collection to traverse use of the iteration variable
in the body

to repeat for each element
sequence of statements

print "protein contains unknown amino acid: ", aa

Getting the position of invalid amino acids. As written above we cannot show the position of the invalid
amino acid in the protein sequence, because only the amino acid character is known in the body of thefor loop.
Therefore, we have to iterate over the indices of the sequence. Here is the algorithm:

1. for each position in the protein sequence

a. if the character at this position is not an amino acid

• print the position and the invalid character
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b. end if

2. end for

What are the possible values of the positions? Remember the string indices, they start at 0 and end at one before
the length of the string. Python has a function that gives the possibility to create a list of numbers that is called
range . Using this function, we can translate the algorithms above into Python:

>>> for i in range(len(protein)):
... if not isAminoAcid(protein[i]):
... print "protein contains unknown amino acid " , protein[i] , \
... " at position ", i

Note

There is a convention in most programming languages to usei, k, l as variable names for the
iteration variable.

Translate cds sequences.Let’s take another example. Say that we have a cds sequence and that we would like to
know such things as the corresponding amino acid sequence or the codon usage. How could we achieve this? For
sure, it looks like a traversal of the cds sequence, but the things we are looking for do not correspond anymore to
one nucleotide of the cds sequence but to a codon which is a three letter substring. If we could access the codons
one by one, the translation into the amino acid sequence would look like this:

• for each codon in the cds sequence:

• add the amino acid corresponding to the current codon to the protein sequence

In the body of the loop we need to establish the correspondence between a codon sequence and the amino acid.
We know how to do this by hand, by looking up a codon in the codon translation table. A dictionary is the data
type that gives us such sort of access to the collection of codons.

>>> code = { ’ttt’: ’F’, ’tct’: ’S’, ’tat’: ’Y’, ’tgt’: ’C’,
... ’ttc’: ’F’, ’tcc’: ’S’, ’tac’: ’Y’, ’tgc’: ’C’,
... ’tta’: ’L’, ’tca’: ’S’, ’taa’: ’*’, ’tga’: ’*’,
... ’ttg’: ’L’, ’tcg’: ’S’, ’tag’: ’*’, ’tgg’: ’W’,
... ’ctt’: ’L’, ’cct’: ’P’, ’cat’: ’H’, ’cgt’: ’R’,
... ’ctc’: ’L’, ’ccc’: ’P’, ’cac’: ’H’, ’cgc’: ’R’,
... ’cta’: ’L’, ’cca’: ’P’, ’caa’: ’Q’, ’cga’: ’R’,
... ’ctg’: ’L’, ’ccg’: ’P’, ’cag’: ’Q’, ’cgg’: ’R’,
... ’att’: ’I’, ’act’: ’T’, ’aat’: ’N’, ’agt’: ’S’,
... ’atc’: ’I’, ’acc’: ’T’, ’aac’: ’N’, ’agc’: ’S’,
... ’ata’: ’I’, ’aca’: ’T’, ’aaa’: ’K’, ’aga’: ’R’,
... ’atg’: ’M’, ’acg’: ’T’, ’aag’: ’K’, ’agg’: ’R’,
... ’gtt’: ’V’, ’gct’: ’A’, ’gat’: ’D’, ’ggt’: ’G’,

61



Chapter 10. Repetitions

... ’gtc’: ’V’, ’gcc’: ’A’, ’gac’: ’D’, ’ggc’: ’G’,

... ’gta’: ’V’, ’gca’: ’A’, ’gaa’: ’E’, ’gga’: ’G’,

... ’gtg’: ’V’, ’gcg’: ’A’, ’gag’: ’E’, ’ggg’: ’G’

... }
>>> code[’atg’]
’M’

Now let us go back to the first part of the problem: getting the codons. If we know where a codon starts, we only
have to extract the substring of length 3 starting from this position. Here is the algorithm:

• for each third position in the cds sequence:

• get the substring of length three starting from this position

Fortunately, therange function can take an optional step argument.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(4,10)
[4, 5, 6, 7, 8, 9]
>>> range(0,10,3)
[0, 3, 6, 9]

We can now print the codon list:

>>> cds = "atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaataa"

>>> for i in range(0,len(cds),3):
... print cds[i:i+3],
...
atg
agt
gaa
cgt
ctg
agc
att
acc
ccg
ctg
ggg
ccg
tat
atc
ggc
gca
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caa
taa
taa

If we replace theprint statement with the access to the dictionary of translation, we can translate the codon into
the amino acid.

Example 10.1. Translate a cds sequence into its corresponding protein sequence

>>> def translate(cds, code):
... prot = ""
... for i in range(0,len(cds),3):
... codon = cds[i:i+3]
... prot = prot + code[codon]
... return prot
>>> translate(cds, code)
’MSERLSITPLGPYIGAQ*’

What about the computing of the codon usage? We do not need the translation table anymore. But we have to
count each codon now. We also need a data structure accessible by codons, although it is not to get information,
but to store the result. Here is the algorithm: do not forget that accessing a key which does not exist in a dictionary,
is not allowed.

• for each codon in the coding sequence:

a. if the codon is already in the dictionary of the usage:

• then add 1 to the count

b. otherwise:

• put the codon in the dictionary with count = 1
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Here is the corresponding Python code:

>>> def count_codons(cds):
... usage = {}
... for i in range(0,len(cds),3):
... codon = cds[i:i+3]
... if usage.has_key(codon):
... usage[codon] += 1
... else:
... usage[codon] = 1
... return usage
...
>>> count_codons(cds)
{’acc’: 1, ’atg’: 1, ’atc’: 1, ’gca’: 1, ’agc’: 1, ’ggg’: 1, ’att’: 1, ’ctg’: 2,

’taa’: 1, ’ggc’: 1, ’tat’: 1, ’ccg’: 2, ’agt’: 1, ’caa’: 1, ’cgt’: 1, ’gaa’: 1}

Exercise 10.2. Write the complete codon usage function

Transform thecount_codons function into a function getting the real codon usage. Hint: You need to divide
each count by the total number of codons.

10.3. The while loop

The while loop

A while loop is composed of two parts, aconditionand asequence of statementsto repeat. During the execution,
thesequence of statementsare repeated as long as theconditionis true. Figure 10.2 illustrates the flow of execution.

Figure 10.2. Flow of execution of a while statement

conditionwhile block true

false

block of statements executed

while condition :

as long as condition is true
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Before saying more, let us illustrate that with an example. We have already shown how to use thefind method of
strings to find pattern (Section 1.1). Let’s try now to find all occurrences of a specific pattern in a DNA sequence.
Here is one possible way to proceed:

Procedure 10.6. Find all occurrences of a pattern in a sequence

INPUT: a DNA sequenceseqand a patternpat

OUTPUT: a list of positionsmatchescontaining all start positions ofpat in seq

1. matches<- empty list
2. current_match<- position of the first occurrence of patternpat in sequenceseqor -1 if there is not anyone
3. as long ascurrent_matchis not -1:

a. matches<- matches+ current_matches
b. current_match<- position of the next occurrence of patternpat in sequenceseqaftercurrent_matchor

-1 if there is not anyone

4. return matches

Example 10.2. First example of a while loop

And here is the implementation inPython:

def findpos(seq, pat):
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

Let’s follow with a second example that rewrites thetranslate function (Example 10.1) using awhile loop
instead of thefor traversal.

Example 10.3. Translation of a cds sequence using the while statement

This version follows the same procedure as the implementation with thefor statement.

code = {’ttt’: ’F’, ’tct’: ’S’, ’tat’: ’Y’, ’tgt’: ’C’,
’ttc’: ’F’, ’tcc’: ’S’, ’tac’: ’Y’, ’tgc’: ’C’,
’tta’: ’L’, ’tca’: ’S’, ’taa’: ’*’, ’tga’: ’*’,
’ttg’: ’L’, ’tcg’: ’S’, ’tag’: ’*’, ’tgg’: ’W’,
’ctt’: ’L’, ’cct’: ’P’, ’cat’: ’H’, ’cgt’: ’R’,
’ctc’: ’L’, ’ccc’: ’P’, ’cac’: ’H’, ’cgc’: ’R’,
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’cta’: ’L’, ’cca’: ’P’, ’caa’: ’Q’, ’cga’: ’R’,
’ctg’: ’L’, ’ccg’: ’P’, ’cag’: ’Q’, ’cgg’: ’R’,
’att’: ’I’, ’act’: ’T’, ’aat’: ’N’, ’agt’: ’S’,
’atc’: ’I’, ’acc’: ’T’, ’aac’: ’N’, ’agc’: ’S’,
’ata’: ’I’, ’aca’: ’T’, ’aaa’: ’K’, ’aga’: ’R’,
’atg’: ’M’, ’acg’: ’T’, ’aag’: ’K’, ’agg’: ’R’,
’gtt’: ’V’, ’gct’: ’A’, ’gat’: ’D’, ’ggt’: ’G’,
’gtc’: ’V’, ’gcc’: ’A’, ’gac’: ’D’, ’ggc’: ’G’,
’gta’: ’V’, ’gca’: ’A’, ’gaa’: ’E’, ’gga’: ’G’,
’gtg’: ’V’, ’gcg’: ’A’, ’gag’: ’E’, ’ggg’: ’G’

}

def translate_while(cds,code):
prot = ""
last_i = len(cds)-3
i = 0

while i < last_i:
codon = cds[i:i+3]
prot = prot + code[codon]
i += 3

return prot

In Python a while loop is written using thewhile statement which is as thefor and theif statements a
block statement. The header of theblock statementcontains the conditional expression and the body contains the
sequence of statements to repeat (Figure 10.3).

Figure 10.3. Structure of the while statement
initalization of the
changing variable

variable which change 
during the repetition

condition of the repetion
in the header of the while statement

in the body of the while statement
sequence of statements to repeat

changing variable
new value of the

current_match = seq.find(pat, current_match+1)
matches.append(current_match)

    current_matchwhile      != −1:

current_match     = seq.find(pat)
matches = []

Look at the following example. Do you know what happened during the execution?
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while 1:
print "hello"

It simply never stops, because 1 is always true and therefore it is neither an algorithm nor a program. But it
illustrates an important feature of awhile loop. The conditional expression has to contain at least one variable
whose value changes during the execution of the sequence of statements.

This variable is often a simple iterator, which is increased or decreased until it reaches a limit. One example of
such aniterator is the variablei in Example 10.3. The behavior of thecurrent_match variable in Example
10.2 is more complicated, because it represents two situations. Its value is the start position of a pattern occurrence
or it is -1 if there are no more occurrences. In this example the second argument of thefind function ensures
that thenextoccurrence is found but no occurrence missed.

Because the iteration variable is used in the condition and the condition is evaluated first when awhile loop
is entered, it has to be defined before entering the loop. This means there are two different affectations of this
variable. A first affectation orinitialization before the loop is entered and a second affectation statement in the
repeated sequence of statements that gives it the next value. In general, this is the last statement of the sequence.
Even if it is not always the case, and sometimes not necessary, it is a convention to put it at the end if possible
because it is easy to find if it has been forgotten.

Warning

Conditions ofwhile loops are frequent error sources. They are sometimes difficult to detect because
they are semantic errors that produce wrong results on all or sometimes only special input data sets. You
have to ensure that the iteration variable changes and that the end condition is always reached.

10.4. Comparison of for and while loops
What are the differences betweenwhile andfor ? And in which cases it is more appropriated to use one or the
other? There are many cases where it is only a question of feeling.

But the while loop is the more general one because its loop condition is more flexible and can be more
complicated than that of afor loop. The condition of afor loop is always the same and implicit in the
construction. Afor loop stops if there are no more elements in the collection to treat. For simple traversals
or iterations over index ranges it is a good advice to use thefor statement because it handles the iteration variable
for you, so it is more secure thanwhile where you have to handle the end of the iteration and the change of the
iteration variable by yourself.

The while loop can take every boolean expression as condition and permits therefore more complex end
conditions. It is also the better choice if the iteration variable does not change evently by the same step or if
there are more than one iteration variable. Even if you can handle more than one iteration variable in afor
statement, the collections from which to choose the values must have the same number of elements.
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Exercise 10.3. Rewrite for as while

Imagine that there is nofor statement in the Python language. How can you rewrite it aswhile statement? Take
the following pseudocode as example:

for var in collection:
do something with var

Thefor loop is a special case of the

10.5. Range and Xrange objects
We have already introduced therange function which generates a list of integers from a start to an end value
(the last is not included) with a regular interval. This function is very useful while writingfor loops because it
gives the possibility to iterate rather over the indices of a collection than over their elements. So you have not only
access to the value of the element but also its position in the collection.

Sometimes you need to iterate over a great interval of integers. In this case the list generated by therange
function would be long and therefore take a lot of memory space and time to be constructed. In such cases it is
more appropriated to use thexrange function which is used in the same way as therange function. But rather
than to create the list of integers physically in memory, it creates an object that calculates the new value if it is
asked for the next element in the list.

10.6. The map function
We will finish this chapter with the introduction of the functionmap which allows to apply a function to all
arguments of an ordered collection. The result is always a list even if the ordered collection is a string. If the
function takes more than one argument, as many collections as arguments have to be specified as arguments.map
takes the first argument from the first collection, the second one from the second collection and so on.

>>> map(isAminoAcid, "atgahryuox")
[1, 1, 1, 1, 1, 1, 1, 0, 0, 1]

>>> def add10(n):
... return n+10
...
>>> map(add10, [0,1,2,3,4,5])
[10, 11, 12, 13, 14, 15]
>>> def add(a,b):

return a+b
>>> map(add, [1,2,3], [1,2,3])
[2,4,6]
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Passing functions as arguments.This is the first example where we pass a function as an argument. Even if this
looks strange at the beginning,function namesare references asvariable nameswhich are bound to the sequences
of statements defined in the body of thefunction definition. The sequence of statements can be viewed as an object
which has the particularity that it can be called with arguments. Figure 10.4 shows what happens when passing a
function as argument. This illustrates that there is no difference between variables and functions as arguments.

Figure 10.4. Passing functions as arguments

sequence of statements

that checks if a character

is an amino acid

global namespace

’athncfxuoa’

local namespace: map(isAminAcid, prot)

isAminoAcid

prot

function

sequence

Another example that handles function names as references is renaming a function as follows:

>>> isAA = isAminoAcid
>>> isAA(’a’)
1

The only difference between function and variable names is that function names are bound to objects that can be
called using the function call syntax.

>>> isAminoAcid
<function isAminoAcid at 0x111ad0>
>>> isAminoAcid(’a’)
1

Without the parenthesis the object bound to the nameisAminoAcid is shown by the interpreter, whereas adding
the parentheses will call the function object bound toisAminoAcid .
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Rewriting mapwith for . mapwith a function that takes only one argument, can be rewritten as follows..

Rewritemap(func, collection)

1. res< empty list
2. for eachelementin collection:

• res < res appended withfunc(element)

3. return res

10.7. Solutions

Solution 10.1. Rewrite for as while

Exercise 10.3

while collection:
var = collection[0]
do something with var
collection = collection[1:]

or using an index

i = 0
while i < len(collection):

var = collection[i]
do something with var
i += 1
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Chapter 11. Nested data structures

11.1. Nested data structures
Composed data structures, such as list, dictionaries and tuples, can be nested in Python. This means that you can
use these structures as elements of themselves.

>>> l = [1, [2, 3, [4]], [5, 6]]

The list above contains 3 elements.

>>> len(l)
3

The first element is the integer 1, whereas the second and third element are lists themselves.

>>> l[0]
1
>>> l[1]
[2, 3, [4]]
>>> l[2]
[5, 6]

Figure 11.1 shows a representation of this list. Each element of a list is represented by a box containing a pointer
to the value of the element. Like pointers in a namespace representation, these pointers are references. Remember
that areferenceis an address to a memory location (Section 2.4).

Figure 11.1. Representation of nested lists
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4
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As far we have said that a list is an ordered collection of some objects, but rather to contain the objects themselves,
a list containsreferencesto them.

How can we access to the elements of the internal list?Figure 11.1 makes clear there are different levels of the
nested structure. Each time we follow a reference we go to the next level of the structure.

To access the value2 of our example list, we could store the value of the second element in a variable which
creates the new referencel1 to this sublist. And then ask for the first element ofl1 .

>>> l1 = l[1]
>>> l1
[2, 3, [4]]
>>> l1[0]
2

But we can also follow the references directly without creating a new variable.

>>> l[1][0]
2

Figure 11.2 colors the path of the references we have followed to access the value2.

Figure 11.2. Accessing elements in nested lists

l1

l

2

4

1
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Nested dictionaries. Dictionaries can be nested in the same way as lists. Here is an example of a dictionary that
stores restriction enzyme data.

>>> enzdict = { ’EcoRI’: {’pattern’: ’GAATTC’, ’cut_position’: ’1’},
’BamHI’: {’pattern’: ’GGATCC’, ’cut_position’: ’1’}}

>>> enzdict
{ ’EcoRI’: {’pattern’: ’GAATTC’, ’cut_position’: ’1’},

’BamHI’: {’pattern’: ’GGATCC’, ’cut_position’: ’1’}}

>>> enzdict[’EcoRI’][’pattern’]
’GAATTC’

Figure 11.3 shows a representation ofenzdict .

Figure 11.3. Representation of a nested dictionary

cut_position

pattern

cut_position

pattern

EcoRI

BamHI

GAATTC

1

GGATCC

1

Mixed structures. In the same way as above you can construct mixed structures. Here is an example of a
restriction enzyme dictionary that stores, in addition to the pattern, all occurrences of the pattern in a sequence.

Example 11.1. A mixed nested datastructure

>>> enzdict = { ’EcoRI’: {’pattern’: ’GAATTC’, ’occ’: [0, 109, 601]},
’BamHI’: {’pattern’: ’GGATCC’, ’occ’: [31, 59]}

Exercise 11.1. Representing complex structures

Try to draw a representation of the the mixed structure in Example 11.1.

11.2. Identity of objects
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In ??? we have said that there exists the two operators== and is for comparing objects in Python without
explaining their differences.

Both operators compare the identity of objects or values, but theis operator looks if their memory locations are
the same, whereas the== operator rather does a content based comparison. Therefore for simple objects, such as
integers, and immutable objects, such as strings, the operators return the same result, but their behavior is different
for composed objects as lists and dictionaries. The following listing shows some examples:

>>> 10.0 == 10
1
>>> 10.0 is 10
0
>>> 10 is 10
1
>>> 10.0 is 10.0
1

>>> "atg" == "atg"
1
>>> "atg" is "atg"
1
>>> start = "atg"
>>> end = start
>>> start == end
1

>>> L1 = [1, 2, 3]
>>> L1 == [1, 2, 3]
1
>>> L1 is [1, 2, 3]
0
>>> L2 = L1
>>> L1 is L2
1
>>> L3 = L1[:]
>>> L1 is L3
0

>>> [1, [2, 3]] == [1, 2, 3]
0
>>> [1, [2, 3]] == [1, [2, 3]]
1

Figure 11.4 shows a representation to illustrate the examples of list comparisons done above.
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Figure 11.4. List comparison

1 2 3

L1

L2

L3

1 2 3

 

(the integers are the same as those of L1

 for lisibility reasons they are doubled here)

anonymous list

compared to L1

Identity of objects. In Python all objects have an identifier that is unique for each object. Therefore two objects
are the same in the sense ofis if they have the same identifier. You can ask for the identifier of an object in
Python using theid function:

>>> id(10)
1104200
>>> id(10.0)
1424356

>>> id("atg")
1183232
>>> id(start)
1183232

>>> id(L1)
1177744
>>> id(L2)
1177744
>>> id(L3)
1121328
>>> id([1, 2, 3])
1174048

Warning

In Python strings are immutable and handled as the same in the sense of theis function if they contain
the same sequence of characters, but this is not the case in all programming languages. In C for example,
even strings with the same sequence of characters can have different memory locations.
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11.3. Copying complex data structures
In the list examples of the above Section 11.2 we have given the example:

>>> L3 = L1[:]

and shown thatL3 andL1 are not the same in memory

>>> L3 is L1
0

This is due to the fact that slicing a list creates a copy of a list and thereforeL3 is only a copy ofL1 but not the
same object in memory.

Let’s look at a second example with a nested list structure:

>>> L1 = [1, [2, 3], 4]
>>> L1
[1, [2, 3], 4]
>>> L2 = L1[:]
>>> L1 is L2
0
>>> L1[1] is L2[1]
1

Figure 11.5 illustrates what happens. In fact slicing creates only a shallow copy of compound objects by creating
a new compound object and populating the new object withreferencesto the members of the old list.

Figure 11.5. Copying nested structures

L1

L2

4

2 3

1
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11.4. Modifying nested structures
Why is it important to know about the identity of compound object elements? Look at the following:

>>> L1 = [1, [2, 3], 4]
>>> L2 = L1[:]

>>> L2[1][0] = 5
>>> L2
[1, [5, 3], 4]
>>> L1
[1, [5, 3], 4]

This example modifies the first element of the list that is the second element ofL2 . But the second element ofL1
is the same in memory as the second element ofL2 . That is the reason whyL1 is also modified, whereas if we
modifie the first level ofL1 , L2 remains unmodified because that only changes independent references in the two
list.

>>> L1
[1, [5, 3], 4]
>>> L2
[1, [5, 3], 4]
>>> L1[1] = 6
>>> L1
[1, 6, 4]
>>> L2
[1, [5, 3], 4]

Figure 11.6 illustrates in red the first modification and in green the second one.
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Figure 11.6. Modifying compound objects
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Copying references occurs also when you use variables.

>>> a = [1, 2]
>>> b = a
>>> a is b
1
>>> c = [a, 3]
>>> c
[[1, 2], 3]
>>> c[0] is a
1
>>> a[1] = 0
>>> c
[[1, 0], 3]
>>> a
[1, 0]
>>> b
[1, 0]

>>> c[0] = 0
>>> c
[0, 3]
>>> a
[1, 0]

Independent copies.It is possible to get an independent copy via thedeepcopy function defined in thecopy
module.
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>>> import copy
>>> L1
[1, 2, 4]
>>> L2
[1, [1, 3], 4]
>>> L3 = copy.deepcopy(L2)
>>> L3
[1, [1, 3], 4]
>>> L3[1] is L2[1]
0
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Chapter 12. Files
During a program execution data are stored in memory. But if the program ends the data are cleared from memory.
In this chapter we will explain how programs can communicate data permanently.

In the above sections we have seen how we can communicateinteractivelywith programs during their execution.
However, if we need to store data permanently, we have to store them infiles.

Files

Filesare entities containing character data which are stored on external devices, such as disks or CD-ROMs.

12.1. Handle files in programs
Files are likebooks. You openthem to start working, thenreador write in them and youclosethem when you
have finished your work. However, you have always to know where you are in the book. As children use their
fingers when they start to learn reading, you manipulate afile pointerwhich indicates your current position in the
file.

File data are ordered collections, such as lists. But you have to traverse all elements to get to a position, whereas
lists can by accessed directly using an index.

Opening. When you open a file in Python using the built-in functionopen , you have to indicate, in addition to
its name, whether you want to read from it or write in it. The default is reading.

Working. Thefile objectcreated by the open function has methods to read from the file, to write in it and to move
thefile pointerto another position.

Although Python can handle files containing binary data as well as text data,file objectshave special functions to
work with text files, such as reading line per line.

At this point we like to show two possibilities to handle text file data line per line. The first one uses the loop
while :

infile="<some-file-name">
infh=open(infile)

line=infh.readline()
while line:

#do something with the line
line=infh.readline()

infh.close()
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And the second one the loopfor .

Example 12.1. Reading from files

infile="<some-file-name>"
infh=open(infile)

for line in infh.xreadlines()
#do something with the line

infh.close()

There exists two file methods,readlines andxreadlines , with the same properties asrange andxrange .
The first one reads all the lines of a file and puts them in a list, whereas the second one allows to iterate over all
lines without creating the list. The first one is appropriated for small files, but if you are not sure about the number
of lines in your file, the second one prevents to overload the memory.

Table 12.1 gives a list of all common used file methods and Table 12.2 explains all possiblemodesto work with
files.

Table 12.1. File methods
Method Action
read([n]) reads at mostn bytes; if non is specified, reads the

entire file
readline([n]) reads a line of input, ifn is specified reads at mostn

bytes
readlines() reads all lines and returns them in a list
xreadlines() reads all lines but handles them as aXRangeType a

write(s) writes stringss
writelines(l) writes all strings in listl as lines
close() closes the file
seek(offset [, mode]) changes to a new fileposition=start + offset .

start is specified by the mode argument:mode=0
(default),start = start of the file,mode=1, start =
current file position andmode=2, start = end of the
file

aSee Section 10.5 for more informations

Table 12.2. File modes
Mode Description
r read
w write
a append
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[rwa]b [reading,writing,append] as binary data (required on
Windows)

r+ update+reading (output operations must flush their data
before subsequent input operations)

w+ truncate to size zero followed by writing

Closing. Although Python closes all opened files when the interpreter exits, it is a good idea to close them
explicitly. Why ???

Important

Pay attention, whileopen is a built in functioncreating a file object,close is amethodof the created
file object.

12.2. Reading data from files
Let us work on a concrete example. In Section 10.3, we have written thefindpos function that finds all
occurrences of a pattern in a sequence. In the following example, we will show how we can read restriction
site patterns of enzymes described in the ReBase [http://www.rebase.org] database.

ReBase database format.In our example we will use an excerpt of thegcgenz.dat file of the restriction
enzyme ReBase database. The information for each restriction enzyme is stored in one line of this file. The
information about isoschizomers and the header of the file containing explanations have been omitted in the
excerpt that we will use. Figure 12.1 shows a part of this file. Each line starts with the enzyme name, followed by
the number of bases after which it cuts the restriction site pattern, the sequence of the restriction site, the length of
the overhang and some comments about the isoschizomeres and the availability of the enzyme.

Figure 12.1. ReBase file format

AarI 11 CACCTGCnnnn’nnnn_ 4 ! >F 201,386
AatII 5 G_ACGT’C -4 ! ZraI >AEFGIKMNOR 624
AccI 2 GT’mk_AC 2 ! FblI,XmiI >ABEGJKMNORSU 288,374,751

Acc65I 1 G’GTAC_C 4 ! KpnI,Asp718I >FGINR 505
AciI 1 C’CG_C 2 ! >N 497
AclI 2 AA’CG_TT 2 ! Psp1406I >IN 140
AfeI 3 AGC’GCT 0 ! Eco47III,Aor51HI,FunI >IN 15
AflII 1 C’TTAA_G 4 ! BfrI,BspTI,Bst98I,MspCI,Vha464I >ABJKNO 722
AflIII 1 A’CryG_T 4 ! >BGMNS 722
AgeI 1 A’CCGG_T 4 ! AsiAI,BshTI,CspAI,PinAI >GJNR 739

Using the general scheme of reading lines from files shown above (Example 12.1), the following shows one
possibility for extracting the restriction site pattern from the line.
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Procedure 12.1. read_rebase

INPUT: afile in rebase format

OUTPUT: a dictionaryenz_dictcontaining all restriction patterns indexed by their name

1. enz_dict<- empty dictionary
2. infh <- openfile for reading
3. for each line read frominfh:

a. split line in its fields
b. name<- first field
c. pat<- third field
d. clean patto get a string containing only the sequence recognized by the restriction enzyme
e. add the cleanedpat to enz_dictwith nameas key

4. closeinfh
5. return enz_dict

here is one possibility how to translate this procedure into Python:

def get_site_only(pat):
newpat = ""
for c in pat:

if c.isalpha():
newpat +=c

return newpat

def read_rebase(filename):
enz_dict={}
infh= open(filename)
for line in infh.xreadlines():

fields = line.split()
name = fields[0]
pat = fields[2]
enz_dict[name] = get_site_only(pat)

infh.close()
return enz_dict

print read_rebase("../data/rebase.dat")

12.3. Writing in files
Let us continue our restriction site example. Because we have got the enzyme pattern from the ReBase database,
we can now process our sequence with all these patterns using thefindpos function (Example 10.2). There is
only one restriction: at the moment thefindpos function can only findexactrestriction patterns, so we have to
exclude all patterns containing ambiguous bases.
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INPUT: a dictionaryenz_dictcontaining all restriction site patterns accessible by enzyme name, a sequenceseq
to search for

OUTPUT: list of start position of every occurrence for each pattern in the dictionary.

• for eachkeyenznamein enz_dict:

a. pat<- pattern ofenznamein enz_dict
b. if pat is anexactpattern

i. occs<- findpos(seq,pat)
ii. print all occs

Theprint_matches in the following listing of functions prints the results of the analysis on the screen.

seq = ""

def isexact(pat):
for c in pat.upper():

if c not in ’ATGC’:
return 0

return 1

def findpos(seq, pat):
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

def print_matches(enz, matches):
if matches:

print "Enzyme %s matches at:" % enz,
for m in matches:

print m,
print

else:
print "No match found for enzyme %s." % enz

for enzname in enz_dict.keys():
pat = enz_dict[enzname]
if isexact(pat):

print_matches(enzname, findpos(seq, pat))
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In order to store the results permanently, we will see now how we can write the information in a file. As for
reading, we have to open a file although now in a writing mode, write our results in the file and then close it.

def print_matches(enz, matches):
ofh = open("rebase.res", "w")
if matches:

print >>ofh, "Enzyme %s matches at:" % enz,
for m in matches:

print >>ofh, m,
print >>ofh

else:
print >>ofh, "No match found for enzyme %s." % enz

ofh.close()

The problem with thisprint_matches function is that it prints only the result oflast enzyme. Because if we
close the file after writing the information, the next time we will open the file for writing the next result, we will
overwrite the old result. We have two possibilities to solve this. First, we can open the file toappendat the end
of the file. Or second, we can open the file for writing in the main stream of the program and then pass the file
object as argument toprint_matches , and close the file only when all results have been written. We prefer
the second solution.

seq = ""

def isexact(pat):
for c in pat.upper():

if c not in ’ATGC’:
return 0

return 1

def findpos(seq, pat):
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

def print_matches(ofh, enz, matches):
if matches:

print >>ofh, "Enzyme %s matches at:" % enz,
for m in matches:

print >>ofh, m,
print >>ofh

else:
print >>ofh, "No match found for enzyme %s." % enz

ofh = open("rebase.res", "w")
for enzname in enz_dict.keys():

pat = enz_dict[enzname]
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if isexact(pat):
print_matches(ofh, enzname, findpos(seq, pat))

ofh.close()

Although it is possible to use thewrite or writelines methods of the file object, we have shown in the above
example how to pass a file object to theprint statement. Which syntax you will use in your own code, is a
question of taste. But the code could be difficult to read if you mix them.

12.4. Design problems
Here is the complete program to find all occurrences of restriction sites from a set of enzymes in a sequence. The
enzyme data are read from a file and the results are also stored in a file.

def findpos(seq, pat):
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

def isexact(pat):
for c in pat.upper():

if c not in ’ATGC’:
return 0

return 1

def print_matches(ofh, enz, matches):
if matches:

print >>ofh, "Enzyme %s matches at:" % enz,
for m in matches:

print >>ofh, m,
print >>ofh

else:
print >>ofh, "No match found for enzyme %s." % enz

def get_site_only(pat):
newpat = ""
for c in pat:

if c.isalpha():
newpat += c

return newpat

def read_rebase(filename):
enz_dict = {}
infh = open(filename)
for line in infh.xreadlines():

fields = line.split()
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name = fields[0]
pat = fields[2]
enz_dict[name] = get_site_only(pat)

infh.close()
return enz_dict

def findpos(seq, pat):
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

seq = """atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaa
tttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtg
ctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggc
ccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatca
tcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacattt
attgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatac
gctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtg
ggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggag
gaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaac
gcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatg
tgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagttt
caggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcacta
tgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaac
cgttttatcgggcggggtaa""".replace("\n","").upper()

enzdict = read_rebase("../data/rebase.dat")

ofh = open("rebase.res", "w")
for enzname in enzdict.keys():

pat = enzdict[enzname]
if isexact(pat):

print_matches(ofh, enzname, findpos(seq, pat))
ofh.close()

We have written this program step by step by broadening the problem at each step, but we have never looked at
the global design of the program. Therefore we have used two strategies while reading and writing. In the reading
step all data are read at once, whereas the results are written each time we got them.

In biological problems it is often necessary to handle lots of data and this can lead to problems if you try to handle
all of them in memory, as we have done with the enzyme data. Sometimes we need all the data to solve a problem,
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but often we can treat them each at a time. If the dataset is small, the choice of the strategy does not change a lot,
but if you handle a large amount of data, it is worth asking whether you really need it all in memory?

In our restriction problem it is not really necessary to store all the enzyme data in the memory. It is possible to
treat enzyme by enzyme with one loop that reads the enzyme data, processes the sequence and writes the result.

Example 12.2. Restriction of a DNA sequence

def isexact(pat):
for c in pat.upper():

if c not in ’ATGC’:
return 0

return 1

def print_matches(ofh, enz, matches):
if matches:

print >>ofh, "Enzyme %s matches at:" % enz,
for m in matches:

print >>ofh, m,
print >>ofh

else:
print >>ofh, "No match found for enzyme %s." % enz

def get_site_only(pat):
newpat = ""
for c in pat:

if c.isalpha():
newpat += c

return newpat

def findpos(seq, pat):
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

seq = """atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaa
tttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtg
ctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggc
ccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatca
tcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacattt
attgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatac
gctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtg
ggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggag
gaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaac
gcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatg
tgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagttt
caggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcacta
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tgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaac
cgttttatcgggcggggtaa""".replace("\n","").upper()

ifh = open("../data/rebase.dat")
ofh = open("rebase.res", "w")

line = ifh.readline()

while line:
fields = line.split()
name = fields[0]
pat = get_site_only(fields[2])

if isexact(pat):
print_matches(ofh, name, findpos(seq, pat))
line = ifh.readline()

else:
line = ifh.readline()

ofh.close()
ifh.close()

Important

Notice that there are two files opened at the same time during the loop.

Figure 12.2 shows three flowchart comparing our first solution, with the new design and a version that first reads
all data in, handles them and writes all results at the end.
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Figure 12.2. Flowchart of the processing of the sequence

open the input file
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open the input file
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Exercise 12.1. Multiple sequences for all enzymes

Think about alternative solutions, their advantages and problems if you need to process more than one sequence
for all restriction enzymes.

12.5. Documentation strings
The code of the program written in this section (Example 12.2) fills about one page. If you put it away for a while
and look on it a week later, it might be difficult to remember all the choices made during the development and it
might take a lot of time to understand it. This fact underlines the importance todocument programs.
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For this purpose you can use comments that are ignored by the interpreter. In Python, all lines starting with a#
character are comments. But Python has a more powerful mechanism to document programs. If the first statement
of a function or file is a string, this string is used as documentation string which is available by thepydoccommand
in a shell or thehelp function of the interpreter.

Here is a documented version of our restriction program.

#!/usr/bin/python
"""
program that finds all occurences of restriction enzymes in a sequence

at the moment the sequence is contained in the seq variable
todo: reads the sequence from a field

enzyme data are read from the file: rebase.dat
and results are written to file: restrict.res

restriction: the program finds only occurences of EXACT restriction patterns
"""

def isexact(pat):
"""

checks if a pattern is an exact DNA sequence
all strings containing only the following characters are considered to be
an exact DNA sequence: atgcATGC

"""
for c in pat.upper():

if c not in ’ATGC’:
return 0

return 1

def print_matches(ofh, enz, matches):
"""

write starting positions of occurences of a restriction site to a file
positions in the sequence starts by 1

"""
if matches:

print >>ofh, "Enzyme %s matches at:" % enz,
for m in matches:

print >>ofh, m+1,
print >>ofh

else:
print >>ofh, "No match found for enzyme %s." % enz

def get_site_only(pat):
"""

clean a pattern string read from Rebase to obtain only the recognition site
sequence

"""
newpat = ""
for c in pat:

92



Chapter 12. Files

if c.isalpha():
newpat += c

return newpat

def findpos(seq, pat):
"""

find all occurences of restriction site pattern in a sequence
RETURN VALUE: a list containing the start positions of all occurences
RESTRICTION: can only process exact patterns, searching with ambiguous
pattern strings would not produce an error

"""
matches = []
current_match = seq.find(pat)
while current_match != -1:

matches.append(current_match)
current_match =seq.find(pat, current_match+1)

return matches

# starting main stream

seq = """atgagtgaacgtctgagcattaccccgctggggccgtatatcggcgcacaaa
tttcgggtgccgacctgacgcgcccgttaagcgataatcagtttgaacagctttaccatgcggtg
ctgcgccatcaggtggtgtttctacgcgatcaagctattacgccgcagcagcaacgcgcgctggc
ccagcgttttggcgaattgcatattcaccctgtttacccgcatgccgaaggggttgacgagatca
tcgtgctggatacccataacgataatccgccagataacgacaactggcataccgatgtgacattt
attgaaacgccacccgcaggggcgattctggcagctaaagagttaccttcgaccggcggtgatac
gctctggaccagcggtattgcggcctatgaggcgctctctgttcccttccgccagctgctgagtg
ggctgcgtgcggagcatgatttccgtaaatcgttcccggaatacaaataccgcaaaaccgaggag
gaacatcaacgctggcgcgaggcggtcgcgaaaaacccgccgttgctacatccggtggtgcgaac
gcatccggtgagcggtaaacaggcgctgtttgtgaatgaaggctttactacgcgaattgttgatg
tgagcgagaaagagagcgaagccttgttaagttttttgtttgcccatatcaccaaaccggagttt
caggtgcgctggcgctggcaaccaaatgatattgcgatttgggataaccgcgtgacccagcacta
tgccaatgccgattacctgccacagcgacggataatgcatcgggcgacgatccttggggataaac
cgttttatcgggcggggtaa""".replace("\n","").upper()

# open the input and output file
ifh = open("../data/rebase.dat")
ofh = open("rebase.res", "w")

# process enzyme by enzyme
line = ifh.readline()
while line:

# extract enzyme name and pattern string
fields = line.split()
name = fields[0]
pat = get_site_only(fields[2])

# find pattern and write the result
if isexact(pat):

print_matches(ofh, name, findpos(seq, pat))
# get the next enzyme
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line = ifh.readline()

# close opened files
ofh.close()
ifh.close()

and the result of the documentation formatted withpydoc

Python Library Documentation: module restrict_documented

NAME
restrict_documented - Program that find all occurrences of restriction enzymes in a sequence

FILE
FILE

/home/maufrais/cours_python/code/restrict_documented.py

DESCRIPTION
At the moment the sequence is contained in the seq variable

Enzyme data are red from the file: rebase.dat
and results are written to file: restrict.res

restriction: the program finds only occurrences of EXACT restriction patterns

FUNCTIONS
get_site_only (pat)

clean a pattern string red from Rebase to obtain only the recognition site
sequence

isexact (pat)
checks if a pattern is an exact DNA sequence
all strings containing only the following characters are considered to be
an exact DNA sequence: atgcATGC

print_matches (ofh, enz, matches)
write starting positions of occurrences of a restriction site to a file
positions in the sequence starts by 1

findpos (seq, pat)
find all occurrences of restriction site pattern in a sequence
RETURN VALUE: a list containing the start positions of all occurrences
RESTRICTION: can only process exact patterns, searching with ambiguous
pattern strings would not produce an error

DATA
__file__ = ’./restrict_documented.pyc’
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__name__ = ’restrict_documented’
fields = [’ZraI’, ’3’, "GAC’GTC", ’0’, ’!’, ’AatII’, ’>I’, ’136’]
ifh = <closed file ’../data/rebase.dat’, mode ’r’>
line = ”
name = ’ZraI’
ofh = <closed file ’rebase.res’, mode ’w’>
pat = ’GACGTC’
seq = ’ATGAGTGAACGTCTGAGCATTACCCCGCTGGGGCCGTATATCGGCGC...CATCGGGCGACGA...
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Chapter 13. Recursive functions

13.1. Recursive functions definitions
In Chapter 10 we have introduced a way to execute repetitive tasks, but we have also mentionned that repetition
can be done without the specialfor andwhile loop statements. This chapter will explain this in detail.

Translate a cds sequence into its corresponding protein.Let’s start with the example of the cds translation.
In Chapter 10 we have already written functions that solve this task using eitherfor (Example 10.1) orwhile
(Example 10.3). Let’s remind the pseudocode of the examples:

INPUT: a cds sequencecdsand a genetic codecode

OUTPUT: the translated cds sequenceprot

1. prot <- empty string
2. as long asthere are still codons to translate:

a. codon<- get next codon from sequencecds
b. lookup the corresponding amino acid of codoncodonin genetic codecodeand add it toprot

3. return prot

1. prot <- empty string
2. for eachcodon in sequencecds:

• add the corresponding amino acid of the current codon to sequenceprot using genetic codecode

3. return prot

In both examples the translation is defined as:

• the concatenation of the first codon of the sequence and the translation of the cds sequence without this codon
or in more mathematical terms:

• translation(cds) = code(cds[:3]) + translation(cds[3:])

This is arecursive definitionof the translation function.
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Recursive functions

A recursive functionis afunctionthat use itself during the calculation procedure.

Recursive definition

A recursive definitionof a function is a definition that uses the function itself in the definition.

It is important to notice that we need aterminal condition otherwise the recursion would never stop. In our case
the recursion stops if there are no more codons to translate:

• the protein sequence of the an empty cds sequence is empty

• or in more mathematical terms:translation("") = ""

Therefore the pseudocode can be written as follow without using loop structures:

INPUT: a cds sequencecdsand a genetic codecode

OUTPUT: the translated sequenceprot

1. if cdsis empty:

a. *** This is the terminal condition ***
b. return empty string

2. otherwise:

a. *** This is the recursion ***
b. codon<- first codon of sequencecds
c. return the concatenation of the corresponding amino acid of the first codon of sequencecdsin genetic

codecodeand the translation of the rest of thecdssequence

98



Chapter 13. Recursive functions

and implemented in Python like that:

code = {’ttt’: ’F’, ’tct’: ’S’, ’tat’: ’Y’, ’tgt’: ’C’,
’ttc’: ’F’, ’tcc’: ’S’, ’tac’: ’Y’, ’tgc’: ’C’,
’tta’: ’L’, ’tca’: ’S’, ’taa’: ’*’, ’tga’: ’*’,
’ttg’: ’L’, ’tcg’: ’S’, ’tag’: ’*’, ’tgg’: ’W’,
’ctt’: ’L’, ’cct’: ’P’, ’cat’: ’H’, ’cgt’: ’R’,
’ctc’: ’L’, ’ccc’: ’P’, ’cac’: ’H’, ’cgc’: ’R’,
’cta’: ’L’, ’cca’: ’P’, ’caa’: ’Q’, ’cga’: ’R’,
’ctg’: ’L’, ’ccg’: ’P’, ’cag’: ’Q’, ’cgg’: ’R’,
’att’: ’I’, ’act’: ’T’, ’aat’: ’N’, ’agt’: ’S’,
’atc’: ’I’, ’acc’: ’T’, ’aac’: ’N’, ’agc’: ’S’,
’ata’: ’I’, ’aca’: ’T’, ’aaa’: ’K’, ’aga’: ’R’,
’atg’: ’M’, ’acg’: ’T’, ’aag’: ’K’, ’agg’: ’R’,
’gtt’: ’V’, ’gct’: ’A’, ’gat’: ’D’, ’ggt’: ’G’,
’gtc’: ’V’, ’gcc’: ’A’, ’gac’: ’D’, ’ggc’: ’G’,
’gta’: ’V’, ’gca’: ’A’, ’gaa’: ’E’, ’gga’: ’G’,
’gtg’: ’V’, ’gcg’: ’A’, ’gag’: ’E’, ’ggg’: ’G’

}

def rectranslate(cds, code):
if cds == "":

return ""
else:

codon = cds[:3]
return code[codon] + rectranslate(cds[3:], code)

print rectranslate("atgattgctggt", code)

13.2. Flow of execution of recursive functions
At first glance recursive functions look a little bit strange because it seems that we use something that we have not
defined. But remember that the statements in the body of a function are only executed when the function is called.
At the definition step, the function is just added in the current namespace. Therefore it will be defined when we
call it in the body.

Writing recursive functions is sometimes difficult, because we doubt that we have defined a function executing the
specific task, when we call the it . Therefore it is useful to remember this fact during the development of recursive
functions.

Stack diagram of recursive functions. Let’s have a deeper look at the flow of execution of recursive functions.
Figure 13.1 shows the stack diagram of function calls.
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Figure 13.1. Stack diagram of recursive function calls
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Figure 13.1 shows that thetranslate function is called with a cds sequence of decreasing length and the local
function namespaces are piled up until the terminal condition is reached.

=> rectranslate("atgattgctggt", code)
===> rectranslate("attgctggt", code)
=====> rectranslate("gctggt", code)
=======> rectranslate("ggt", code)
=========> rectranslate("", code)
=========> return ""
=======> return "G"
=====> return "AG"
===> return "IAG"
=> return "MIAG"
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Important

Recursive function calls can take a lot of memory space because for each recursive call the local
namespace for the given function call has to be stored. It is important to pay attention on this fact
because memory space is a limited resource on a computer.

13.3. Recursive data structures
In the Chapter 11, we have worked with examples using nested list. If we examine them a little bit more, we will
see that a nested list can be defined recursively.

Nested list

A nested list is an ordered collection of elements that are:

• either items

• or nested lists

The items define the content, whereas the lists define the structure of the collection.

How can we use this?Let’s use phylogenetic trees as examples for such a recursive list structure. Figure 13.2
shows an example of a phylogenetic tree topology that can be implemented in Python as follows:

>>> tree = [[[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’], ’gibbon’]

Figure 13.2 shows the representation oftree .

101



Chapter 13. Recursive functions

Figure 13.2. A phylogenetic tree topology

human chimpanzee gorilla orang−utan gibbon

Figure 13.3. Tree representation using a recursive list structure

chimpanzeehuman gorilla orang−utan gibbon

tree

Working with recursive structures. Assume that we would do something for each branching point in the above
tree. A simple traversal usingfor or while is no more possible, because both loop structures handle only one
level of the list. But with recursive functions that we have introduced in Chapter 13, we can do such things with
the following strategy:

Procedure 13.4. tree_traversal(tree)

INPUT: a treetree

1. do what you have to do when you enter the branching point
2. if tree is a list:

a. *** recursion step ***
b. for eachelementof tree:
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• tree_traversal(element)

3. otherwise:

• *** end condition of the recursion, here the leaves of the tree ***

4. do what you have to do when you leave the branching point

Doing something when you enter the branching point, is also known aspreorder traversalof a tree, whereas doing
something when leaving a branching point is also calledpostorder traversalof a tree.

We will give two example applications of this strategy for our tree. The first one prints all species of the trees:

tree = [[[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’], ’gibbon’]

import types

def print_species(tree):
if type(tree) is types.ListType:

for child in tree:
print_species(child)

else:
print tree

>>> print_species(tree)
human
chimpanzee
gorilla
orang-utan
gibbon

and the second one that prints for a tree or a binary tree2 the two populations that are split at this point.

tree = [[[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’], ’gibbon’]

import types

def splits(tree):
if type(tree) is types.ListType:

all_leaves = []
for child in tree:

child_leaves = splits(child)
print child_leaves,
all_leaves += child_leaves

A binary tree is a tree with maximal two subtrees for each branching point.
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print
return all_leaves

else:
return [ tree ]

def binary_splits(tree):
if type(tree) is types.ListType:

left = binary_splits(tree[0])
right = binary_splits(tree[1])
print left, right
return left + right

else:
return [ tree ]

>>> splits(tree)
[’human’] [’chimpanzee’]
[’human’, ’chimpanzee’] [’gorilla’]
[’human’, ’chimpanzee’, ’gorilla’] [’orang-utan’]
[’human’, ’chimpanzee’, ’gorilla’, ’orang-utan’] [’gibbon’]
[’human’, ’chimpanzee’, ’gorilla’, ’orang-utan’, ’gibbon’]

Finally, we will show the code that separates the work to do from the tree traversal itself by functions. The
traversal functiontree_traversal do not change for the task. The user has only to redefine the functions
do_prework , do_postwork anddo_leafwork .

import types

def do_prework(node):
print "prework:", node

def do_postwork(node):
print "postwork:", node

def is_leaf(node):
return type(node) is not types.ListType

def do_leafwork(leaf):
print "that is a leaf:", leaf

def tree_traversal (node):
do_prework(node)

if not is_leaf(node):
for child in node:

tree_traversal(child)
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else:
do_leafwork(node)

do_postwork(node)

>>> tree=[[[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’], ’gibbon’]
>>> tree_traversal(tree)
prework: [[[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’], ’gibbon’]
prework: [[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’]
prework: [[’human’, ’chimpanzee’], ’gorilla’]
prework: [’human’, ’chimpanzee’]
prework: human
that is a leaf: human
postwork: human
prework: chimpanzee
that is a leaf: chimpanzee
postwork: chimpanzee
postwork: [’human’, ’chimpanzee’]
prework: gorilla
that is a leaf: gorilla
postwork: gorilla
postwork: [[’human’, ’chimpanzee’], ’gorilla’]
prework: orang-utan
that is a leaf: orang-utan
postwork: orang-utan
postwork: [[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’]
prework: gibbon
that is a leaf: gibbon
postwork: gibbon
postwork: [[[[’human’, ’chimpanzee’], ’gorilla’], ’orang-utan’], ’gibbon’]

105



Chapter 13. Recursive functions

106



Chapter 14. Exceptions

Chapter 14. Exceptions

14.1. General Mechanism
Exceptions are a mechanism to handle errors during the execution of a program. An exception israisedwhenever
an error occurs:

Example 14.1. Filename error

>>> f = open(’my_fil’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IOError: [Errno 2] No such file or directory: ’my_fil’

An exception can becaughtby the code where the error occurred:

try:
f = open(’my_fil’)

except IOError, e:
print e

Variablee contains the cause of the error:

[Errno 2] No such file or directory: ’my_fil’

14.2. Python built-in exceptions
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Python predefines several exceptions (Figure 14.1).

Figure 14.1. Exceptions class hierarchy

ZeroDivisionError

ArithmeticError FloatingPointError

OverflowError

EnvironmentError IOError

WindowsError

OSError

RunTimeError NotImplementedError

NameError UnboundLocalError

SyntaxError TabError

IndentationError

UnicodeErrorValueError

Exception SystemError

StandardError

AttributeError

AssertionError

EOFError

ImportError

KeyboardInterrupt

MemoryError

LookupError IndexError

KeyError

TypeError

SystemError

• AttributeError : when you attempt to access a non-existing attribute (method or variable) of an object.

• NameError : failure to find a global name (module, ...)

• IndexError , KeyError : occurs when attempting to access either an out-of-range index in a list or a
non-existing key in a dictionary

• TypeError : passing an inappropiate value to an operation

• TabError , IndentationError : two kinds ofSyntaxError
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14.3. Raising exceptions
You can alsoraisean exception in your code, if you consider that the program should be interrupted:

if something_wrong:
raise Exception

You can associate a message to theraise statement:

if something_wrong:
raise Exception, " something went wrong"

Example 14.2. Raising an exception in case of a wrong DNA character

def check_dna(dna, alphabet=’atgc’):
""" using exceptions """

for base in dna:
if base not in alphabet:

raise ValueError, "%s not in %s" % (base, alphabet)

return 1

14.4. Defining exceptions
Python provides a set of pre-defined exception classes that you can specialize by sub-classing to define specific
exceptions for your application (Figure 14.1).

Go to

Since exceptions are defined as classes and by inheritance, you will need some knowledge about classes
in order to fully understand this section (see Chapter 17).

Example 14.3. Raising your own exception in case of a wrong DNA character

In the following code, you define an exceptionAlphabetError that can be used when the sequence passed to
the function does not correspond to thealphabet .

class AlphabetError(ValueError): ❶
pass

def check_dna(dna, alphabet=’atgc’):
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""" using exceptions """

for base in dna:
if base not in alphabet:

raise AlphabetError, "%s not in %s" % (base, alphabet)

return 1

❶ Definition of a new exception in categoryValueError : AlphabetError is a class, that is a sub-
class of classValueError . The only statement present in classAlphabetError is pass since
AlphabetError does not define any new behaviour: it is just a new class name.

Example 14.4. Exceptions defined in Biopython

Some Biopython modules define their own exceptions, such as:

• ParserFailureError (GenBank package)

• BadMatrix (SubsMat package)
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Chapter 15. Modules and packages in Python

15.1. Modules
A module is a component providing Python definitions of functions, variables or classes... all corresponding to a
given specific thema. All these definitions are contained in a single Python file. Thanks to modules, you can reuse
ready-to-use definitions in your own programs. Python also encourages you to build your own modules in a rather
simple way.

15.1.1. Using modules

In order to use a module, just use theimport statement. Let us take an example. Python comes with numerous
modules, and a very useful one is thesys module (sys stands for "system"): it provides information on the context
of the run and the environment of the Python interpreter. For instance, consider the following code:

#!/local/bin/python
import sys

print "arguments: ", sys.argv

Say that you stored in a modexa.py file, and that you run it like this:

./modexa.py 1 a seq.fasta

This will produces the following output:

arguments: [’./modexa.py’, ’1’, ’a’, ’seq.fasta’]

Explanation: By using theargv variable defined in thesys module, you can thus access to the values provided
on the command line when launching the program. As shown in this example, the access to this information is
made possible by:

• importing the module through theimport statement, which provides access to the module’s definitions

• using theargv variable defined in the module by a qualified name:sys.argv .
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You may also select specific components from the module:

from sys import argv
print "arguments: ", argv

In this case, you only import one definition (theargv variable) from thesys module. The other definitions are
not loaded.

15.1.2. Building modules

You build your own module by creating a Python file. For instance, if the fileValSeq.py contains the following
code (adapted from the BiopythonValSeq module):

Example 15.1. A module

# file Valseq.py

valid_sequence_dict = { "P1": "complete protein", \
"F1": "protein fragment", "DL": "linear DNA", "DC": "circular DNA", \
"RL": "linear RNA", "RC":"circular RNA", "N3": "transfer RNA", \
"N1": "other" }

def find_valid_key(e):
for key,value in valid_sequence_dict.items():

if value == e:
return key

you can use it by loading it:

import ValSeq

whereValSeq is the module name. You can then access to its definitions, which may be variables, functions,
classes, etc...:

>>> print ValSeq.valid_sequence_dict[’RL’]
linear RNA
>>> ValSeq.find_valid_key("linear RNA")

RL

15.1.3. Where are the modules?

Modules are mainly stored in files that are searched:

112



Chapter 15. Modules and packages in Python

• in your current working directory,

• in PYTHONHOME, where Python has been installed,

• in a path, i.e a colon (’:’) separated list of file paths, stored in the environment variablePYTHONPATH. You
can check this path through thesys.path variable.

Files may be:

• Python files, suffixed by.py (when loaded for the first time, compiled version of the file is stored in the
corresponding.pyc file),

• defined as C extensions,

• built-in modules linked to the Python interpreter.

Exercise 15.1. Locating modules

Sometimes, it is not enough to usepydoc or help . Looking at the source code can bring a better understanding,
even if you should of course never use undocumented features.

Browse the directory treePYTHONHOME/site-packages/Bio/.

15.1.4. How does it work?

When importing a module, the interpreter creates a new namespace, in which the Python code of the module’s file
is run. The interpreter also defines a variable (such assys , ValSeq , ...) that refers to this new namespace, by
which the namespace becomes available to your program (Figure 15.2).

Figure 15.1. Module namespace

argv

path

sys

import sys

current namespace

...

...
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open

A module is loaded only once, i.e, a secondimport statement will neither re-execute the code inside the module
(see Pythonreload statement in the reference guides), nor will it re-create the corresponding namespace.

When selecting specific definitions from a module:

>>> from ValSeq import find_valid_key
>>> find_valid_key("linear RNA")
RL

the other components stay hidden. As illustrated in Figure 15.2, no new namespace is created, the imported
definition is just added in the current name space.

Figure 15.2. Loading specific components

ValSeq

valid_sequence_dict

find_valid_key

find_valid_key

import ValSeq from ValSeq import find_valid_key

current namespace current namespace

This can causes errors if the definition that is imported needs to access to other definitions of the module, e.g:

>>> print valid_sequence_dict[’RL’]
NameError: name ’valid_sequence_dict’ is not defined
>>> print ValSeq.valid_sequence_dict[’RL’]
NameError: name ’ValSeq’ is not defined

You can also load "all" the components from a module, which makes them availabledirectly into your code:

>>> from ValSeq import *
>>> find_valid_key("linear RNA")
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You probably did this many times in order to use thestring module’s definitions, right? The result of:

>>> from string import *

is that all the definitions of the module are copied in your current namespace.

Caution

Be aware of potential names collision: for instance, if you current namespace contains a definition of a
variable called, say:count , it will be destroyed and overloaded by thestring module’s definition of
thecount function.

Caution

You can restrict the components being imported by animport * statement. The__all__ variable,
also used for packages (Section 15.2), can explicitly list the components that should be directly accessible
(see Exercise 15.4).

15.1.5. Running a module from the command line

When the file of a module is run from the command line (instead for being imported):

% python ValSeq.py

the module does not behaves like a module anymore. It is, instead, run within the default__main__ module (i.e
not theValSeq module):

% python -i ValSeq.py
>>> ValSeq.find_valid_key("linear RNA")
NameError: name ’ValSeq’ is not defined
>>> find_valid_key("linear RNA")
’DL’

For this reason, the code executed when the module is loaded (e.g: either with import or from the command line)
can be made dependent of its current name by testing this name. The current module’s name is stored in a special
purpose variable__name__:

if __name__ == ’__main__’:
# statements that you want to be executed only when the
# module is executed from the command line
# (not when importing the code by an import statement)

print find_valid_key("linear RNA")
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15.2. Packages
A package is a set of modules or sub-packages. A package is actually a directory containing either.py files or
sub-directories defining other packages.

The dot (.) operator is used to describe a hierarchy of packages and modules. For instance, the module
Bio.WWW.ExPASy is located in the filePYTHONHOME/site-packages/Bio/WWW/ExPASy.py . This
module belongs to the Bio.WWW package located into thePYTHONHOME/site-packages/Bio/WWW/
directory.

15.2.1. Loading

When loading a package, the__init__.py file is executed. If the__init__.py defines classes, functions,
etc... they become available at once, as shown in the following example:

Example 15.2. Using the Bio.Fasta package

>>> import Bio.Fasta
>>> handle = open("data/ceru_human.fasta")
>>> it = Bio.Fasta.Iterator(pin, Bio.Fasta.SequenceParser())
>>> seq = it.next()
>>> print seq.seq
>>> it.close()

However, loading a package does not automatically load the inner modules. For instance, even though the
Bio.Fasta package directory contains the following files:

% ls Bio/Fasta
FastaAlign.py FastaAlign.pyc __init__.py __init__.pyc

this does not imply that importing theBio.Fasta package loads theBio.Fasta.FastaAlign module:

>>> import Bio.Fasta
>>> Bio.Fasta.FastaAlign.parse_file("data/ceru_human.fasta")
AttributeError: ’module’ object has no attribute ’FastaAlign’

Issuing:

>>> from Bio.Fasta import *

will however load theBio.Fasta.FastaAlign , because this module is mentioned in the__all__ attribute
in theBio/Fasta/__init__.py file:
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__all__ = [
’FastaAlign’,

]

Other attributes of interest for packages and modules:

• __name__

• __path__

• __file__

Exercise 15.2. Bio.SwissProt package

Which import statements are necessary to make the following code work?

expasy = ExPASy.get_sprot_raw(’CERU_HUMAN’)
sp = SProt.Iterator(expasy, SProt.RecordParser())
record = sp.next()
print record.keywords

???

Exercise 15.3. Using a class from a module

Why does the following code issue an error?

from Bio.SubsMat import FreqTable
dict = ... # whatever
f = FreqTable(dict, ’COUNT’)
TypeError: ’module’ object is not callable

???

Exercise 15.4. Import from Bio.Clustalw

Why does the following code not work?

from Bio.Clustalw import *
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a=ClustalAlignment()
NameError: name ’ClustalAlignment’ is not defined

???

15.3. Getting information on available modules and pack-
ages

You can use thehelp to get the list of available modules:

>>> help("modules")

Please wait a moment while I gather a list of all available modules...

To search through the documentation of modules for a specific word, for instance "SProt", also use thehelp
command like this:

>>> help("modules SProt")

Here is a list of matching modules. Enter any module name to get more help.

Bio.SwissProt.KeyWList - KeyWList.py
Bio.SwissProt.SProt - SProt.py
Bio.SwissProt (package)

Thesys also contains the dictionary of loaded modules.

118



Chapter 16. Scripting

Chapter 16. Scripting

16.1. Using the system environment: os and sys modules
There are modules in the Python library that help you to interact with the system.

The sys module. The sys module provides an interface with the Python interpreter: you can retrieve the
version , the strings displayed as prompt (by default: ’>>>’ and ’...’), etc... You can find the arguments that
were provided on the command line:

% python -i prog.py myseq.fasta
>>> import sys
>>> sys.argv
[’prog.py’, ’myseq.fasta’]

The file handle for the standard input, output and error are accessible from thesys module:

>>> sys.stdout.write("a string\n")
a string
>>> sys.stdin.read()
a line
another line
’a line\nanother line\n’ ❶

❶ You have to enter a Ctl-D here to end the input.

The os module. This module is very helpful to handle files and directories, processus, and also to get environment
variables (seeenviron dictionary). One of the most useful component is theos.path module, that you use to
get informations on files:

>>> import os.path
>>> os.path.exists(’myseq.fasta’)
1
>>> os.path.isfile(’myseq.fasta’)
1
>>> os.path.isdir(’myseq.fasta’)
0
>>> os.path.basename(’/local/bin/perl’)
’perl’
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Exercise 16.1. Basename of the current working directory

Write the statements to display thebasename of the current working directory.

Theos.path module provides a method:walk that enables to walk in all the directories from a starting directory
and to call a given function on each.

Example 16.1. Walking subdirectories

The following code displays for each directory its name and how many files it contains:

>>> def f(arg, dirname, fnames):
... print dirname, ": ", len(fnames)

>>> os.path.walk(’.’, f, None)

The arguments of functionf must be:dirname , which is the name of the directory, andfnames which is a list
containing the names of the files and subdirectories indirname . arg is a free parameter, that is passed towalk
(here: None).

Exercise 16.2. Finding files in directories

Find a file of a given name and bigger than a given size in a directory and its sub-directories. Only consider files,
not directories.

16.2. Running Programs
You can run external programs from a Python program. There are three major tasks to perform in order to run
programs from a script:

• Building the command line.

• Testing for success and checking for potential errors.

• Getting results.
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Example 16.2. Running a program (1)

The simplest way to run a program is by using thesystem of theos module. The result of the program will be
printed on the standard output, which is normally the screen. The return value reports about the success or failure
of the execution.

import os
cmd="golden swissprot:malk_ecoli"
status = os.system(cmd)
print "Status: ", status

Another Python module,commands, enables to store the result of the execution in a string:

import commands
cmd="golden swissprot:malk_ecoli"
output = commands.getoutput(cmd)
print "Output: ", output

To get both result and status:

import commands
cmd="golden swissprot:malk_ecoli"
status, output = commands.getstatusoutput(cmd)
print "Output: ", output
print "Status: ", status

Example 16.3. Running a program (2)

A more elaborate but lower level interface to run commands is provided by thepopen function from theos
module. The following script runs a program that fetches a Swissprot entry given its entry name, and prints it on
the screen.

import os
import string
cmd="golden swissprot:malk_ecoli" ❶
handle = os.popen(cmd, ’r’) ❷
print string.join(handle.readlines()) ❸
handle.close()

❶ Builds the command line with a program name and the arguments.
❷ Runs the command and stores a handle in thehandle variable. A handle for a command is the same kind

of objects as a file handle: you open it (with thepopen command, read from it, and close it.
❸ Reads all the lines from the handle, and prints the joint result.
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If the program takes time and if you wish to read the result step by step as long as results show up, you can do like
this:

import os
import sys

cmd="blastall -i " + sys.argv[1] + " -p blastp -d swissprot"
handle = os.popen(cmd, ’r’, 1)
for line in handle:

print line,
handle.close()

What if the entry name does not have a corresponding entry in the database? Let us try the following code:

import os
import sys
import string
cmd="golden swissprot:" + sys.argv[1] ❶
handle = os.popen(cmd, ’r’)
print string.join(handle.readlines())
status = handle.close()
if status is not None:

print "An error occured: ", status ❷

❶ Takes the entry name from the Python command line arguments, by using thesys moduleargv variable.
❷ If the provided entry name is invalid, the program returns a non zero value, that is returned by theclose

function.

If you wish to get the complete error message from the program, use thepopen3 function:

import os
import sys
cmd="golden swissprot:" + sys.argv[1]
tochild, fromchild, childerror = os.popen3(cmd, ’r’)
err = childerror.readlines()
if len(err) > 0:

print err
else:

print fromchild.readlines()

In this script, the call returns three objects: one to get results:fromchild (standard output), one to write to the
program - on itsstandard input- (for instance when the program is prompting for a value (see Example 16.4):
tochild , and one to access to thestandard errorfile descriptor of the program.
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Example 16.4. Running a program (3)

The next example shows how to run aninteractiveprogram, both reading the output and writing on the standard
input to answer program’s questions. The Phylipdnapars program, once having read the input file containing an
alignment, that is always calledinfile , waits for the user to enter ’y’ and ’Return’ to proceed. The following
script runs dnapars after some file cleaning.

import popen2
import os.path

cmd = "dnapars"

if os.path.exists(’treefile’): ❶
os.unlink(’treefile’)

if os.path.exists(’outfile’):
os.unlink(’outfile’)

child = popen2.Popen3(cmd) ❷
print "PID: ", child.pid
child.tochild.write("y\n") ❸
child.tochild.close()
child.wait() ❹
print "".join(child.fromchild.readlines()) ❺
status = child.fromchild.close()
if status is not None:

print "status: ", status

❶ Removes olddnaparsoutput files.
❷ Use of the classPopen3 that stores the information about the run program. The return value:child , is

an object representing the "child" processus, that has attributes to get the channels to communicate with the
processus: a handle to write to the standard input of the processus (child.tochild ), and a handle to read
its output (child.fromchild ). See Chapter 17 for more informations on classes.

❸ Answers to program prompt.
❹ This statements helps in cleaning the processus after completion.
❸ Reads results.

16.3. Parsing command line options with getopt
Thegetopt module helps script to parse a complex command line options. Example 16.5 shows an example.

Example 16.5. Getopt example

This example shows a piece of code for handling options in a program called, say,filteralig , taking an alignment
and filtering some sites according to specific criteria. Options are of the form: ’-o1 value1 -o2 value2’ where ’o1’
and ’o2’ are the names of the options and value1, value2 are their argument, which might be optional for some of
the parameters. You can use this script this way, for instance:
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filteralig -t0.7 -f2,3 align_file

import sys
import getopt

def usage(prog="filtersites"): ❶
print """

filteralig : filter sites in alignments

filteralig [-ch] [-t <threshold>] [-f <frames>] [-i <cols>] <alignment>

-h print this message

-c print colum numbers of the original alignment

-t <threshold> filter all colums with a conservation above <threshold>
-f <frames> filter all codonpositions of frames

possible values 1, 2, 3
for more than one use syntaxe: ’1,2’

-i <cols> filter this columns
syntaxe: give a string with the column numbers separated by

’,’

<alignment> the file has to be in clustalw format

"""

o, a = getopt.getopt(sys.argv[1:], ’ct:f:i:h’) ❷
opts = {}
for k,v in o: ❸

opts[k] = v
if opts.has_key(’-h’): ❹

usage(); sys.exit(0)
if len(a) < 1: ❺

usage(); sys.exit("alignment file missing")

❶ A usage function is very useful to help the user in case of an error on the command line.

❷ The first parameter for thegetopt function should be a string containing the actual arguments the script
has been called with, not including the script name, available insys.argv[0] .

The second parameter is a string describing the expected options. The options string which is passed to
getopt is here: ’ct:f:i:h’. This means that the following options are available: c, t, f, i and h. When a ’:’ is
added just after, this means that the option expects a value. For instance, the ’-t’ option requires a threshold
value. See theusage !
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Thegetopt function returns tuple, whose first element is a list of (option, value) pairs. The second element
is the list of program arguments left after the option list was stripped. Here, a filename for an alignment file
is expected.

❸ Storing (option, value) pairs in a dictionary.
❹ If the user has entered a-h, help is printed.
❺ Has the user provided a filename ? If so, it is available ina[0] .

16.4. Parsing
In Bioinformatics, parsing is very important, since it enables to extract informations from data files or to extract
results produced by various analysis programs, and to make them available in your programs. For instance, a
Blast parser will transform a text output into a list of hits and their alignment, that can be made available as a data
structure, such as, for example, BiopythonBio.Blast.Record objects, that you can use in a Python program.

The purpose of this section is not to present everything about parsing, but just to introduce some basic notions.

Parsing means analyzing a text and producing structured data in a form that is useful for programs. It can be a
list of strings, a set of classes instances, or just a boolean result: this depends on the needs and the parsing system
you are using. An important aspect of parsing is the architecture that is used to process the text that you want to
analyze.

• Parsing can be done by just reading a file or a stream line by line, and by looking for the occurrence(s) of
a word, or a pattern. In Figure 16.1, lines are searched for a header pattern, or a hit pattern, and processed
accordingly.

Figure 16.1. Manual parsing

blast_report

Python program

      process_header(line)

    elif hit(line):
      process_hit(line)

      process_hsp(line)
    elif hsp(line):

for line in file:

    if found header in line:
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• You can tell an external component which set of words you are interested in, by providing a description of set
of words to be found. You then feed this component a document to parse, and wait him to tell you when these
words are found as well as sending you the occurrences. This kind of system is said to beevent-driven, and
XML provides tools for such type of parsing.

Figure 16.2. Event-based parsing

header_handler(data)

hit_handler(data)

hsp_handler(data)

blast_report

description of required events
or elements

Engine

• You can describe the whole document by set of hierarchical subparts, and associate to each sub-part actions
to be automatically executed by a parsing engine. Figure 16.3 shows such a system to parse a Blast report. A
Blast report is described as a header followed by a list of hits. A hit is described as a score and a list of HSP, and
a HSP is described as a score and a list of alignments. You define these subparts by a set ofrules, sometimes
using patterns, in what is usually called agrammar, or even adecoratedgrammar, since you decorate each
sub-part with an associated action. Thelex andyacc system is such a parsing engine.

Figure 16.3. Parsing: decorated grammar
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Engine

blast_report

actions for alignment
alignment:

blast: header, list of hits

actions for hsp
hsp: score, alignment

actions for hit
hit:  score, list of hsps

actions for header
header: 

decorated grammar

• You can have a parsing engine process your data according to a grammar, and returns a hierarchical data
structure in a form that your program can understand (for instance, in Python, as a set of objects). The
XML/DOM engine behaves like this.

Figure 16.4. Parsing result as a hierarchical document

blast_report

Engine

grammar

data structure representing document
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So, in all the cases, there is an engine driving the whole process, be it a simple loop or a specialized component.
In this chapter, we will just do some "manual" parsing with patterns that are introduced in Section 16.5, as well as
some event-driven parsing will be done as a practical work on abstract frameworks (see Exercise 18.2), and during
the Web/XML course.

16.5. Searching for patterns.

16.5.1. Introduction to regular expressions

Regular expressionis a term used in computer science to refer to the language that is used to describe patterns to
be searched for in a text. The term comes from the computing languages theory where regular expressions are
used to denote regular languages. In turn, regular languages are defined as the languages that can be recognized
by a finite-state automaton (a topic that will be introduced in the algorithmic course).

The aim of a pattern is to define not only one word to be searched for, but a set of words. This definition is
provided in a given language, depending on the system you are working with; the set of corresponding words also
depends on the system.

In the Unix shell, for instance:

ls s*

means list all the files beginning by ’s’, and potentially followed by anything. The command:

ls s[ie]n*

means list all the files beginning by ’s’, followed by either ’i’ or ’e’, and followed by anything, including nothing.
So, in the context of thels function within a Unix shell, the set of words is defined as the files existing on the
filesytem (as opposed, for instance, to the files stored on another computer, not being made available through a
distributed filesystem).

In the Prosite database, patterns describing protein domains are described, such as:

H-C-H-x(3)-H-x(3)-[AG]-[LM]

which represent the following set of amino-acid sequences: sequences begining by ’HCH’, followed by 3 positions
containing any amino-acid letter, followed by ’H’, followed again by 3 free positions, followed by either ’A’ or
’G’, followed by either ’L’ or ’M’. As you can notice, the language to define patterns is different from the Unix
shell, as well as the set of corresponding words. Here, they are just sequences of amino-acids letters.

In thegrep Unix command, a command to search for patterns in files, although similar to the shell pattern syntax,
there is a slight difference. Say that a file contains:
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science
s
another

the following command:

grep ’s*’ file

will return ... all the lines, because ’s*’ means all the words beginning by 0 or any number of ’s’. In thegrep
command, the set of words is composed of the lines of the file. So the term "set of words" must be understood in a
broad sense. It must be understood also thatthe set is not actually generated, of course: it can be infinite! Instead,
an operational representation of this set is built, through a finite-state automaton.

In SQLlanguages, you can also provide patterns:

select clone_name from CLONE where clone_id like ’[^A]%[02468]’

means that you restrict the query to the clones whose identifier does not begin with a ’A’, is followed by any
character N times, and ends with an even number (Sybase).

While the set of words corresponding to a pattern is described by the given expression and the semantics of the
system being used, the set of found words, also calledoccurrences, depends on data. So, occurrences are the
words from the set of words that were actually found within data. Figure 16.5 summarizes the concepts.

Figure 16.5. Pattern searching

expression

System semantics

set of words

data

occurrences of
words in data

(representation of)
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16.5.2. Regular expressions in Python

A detailed presentation of Python regular expressions is available here: Regular Expression HOWTO [http://py-
howto.sourceforge.net/regex/regex.html]. To get information about there module, see pydoc, but also thesre
module (Support for regular expressions), for whichre is a wrapper.

In Python, regular expressions are handled by a module:re :

>>> import re

Before searching for a pattern, you must firstcompileit (this builds the "set of words", or rather the representation
of this set):

>>> expression = ’[AP]{1,2}D’
>>> pattern = re.compile(expression)

pattern is apattern object. You then issue asearch, for instance in the small sequenceseq , by a request to the
pattern object:

>>> seq = "RPAD"
>>> match = pattern.search(seq)

This establishes thematching, or correspondances, between the set of possible words and data.match is called
a match object. To get the occurrences, you can ask the match object for the start and end of the match in the
searched text:

>>> print match.start(), match.end(), seq[match.start():match.end()]
1 4 PAD

or thegroup :

>>> match.group(0)
’PAD’
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Figure 16.6 summarizes this system.

Figure 16.6. Python regular expressions

expression
pattern object

pattern.search()

match object

match.start()
match.end()
match.group(0)

data

pattern.match()

re.compile

Example 16.6. Searching for the occurrence of PS00079 and PS00080 Prosite patterns in
the Human Ferroxidase protein

import sys
import re
from Bio.SwissProt import SProt

sp = open(sys.argv[1])
iterator = SProt.Iterator(sp, SProt.SequenceParser())
seq = iterator.next().seq
sp.close()

PS00079 = ’G.[FYW].[LIVMFYW].[CST].{8,8}G[LM]...[LIVMFYW]’ ❶
pattern = re.compile(PS00079) ❷
match = pattern.search(seq.tostring()) ❸
print PS00079
print match.start(), match.end(), seq[match.start():match.end()] ❹

❶ The regular expression is stored in a string.
❷ The regular expression is compiled in a pattern.
❸ The compiled pattern is searched in the sequence.
❹ The result of the search is printed.
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There are several methods to search:search andmatch , the difference being thatmatch looks for a matchat
the beginning of the string. So, back to the example, the following statement:

match = pattern.match(seq.tostring())

would return a positive result only if the sequence begins by an occurrence of PS00079.

A convenient feature enables to associate a name to sub-parts of the matched text:

import sys
import re
from Bio.SwissProt import SProt

sp = open(sys.argv[1])
iterator = SProt.Iterator(sp, SProt.SequenceParser())
seq = iterator.next().seq
sp.close()

PS00080 = ’(?P<copper3>H)CH...H...[AG](?P<copper1>[LM])’ ❶
pattern = re.compile(PS00080)
match = pattern.search(seq.tostring())
print PS00080
print match.start(), match.end(), seq[match.start():match.end()]

print ’copper type 3 binding residue: ’, match.group(’copper3’) ❷
print ’copper type 1 binding residue: ’, match.group(’copper1’)

❶ The regular expression now contains 2 identifiers:copper1 andcopper3 .
❷ You can print the sub-parts of the result identified by variables:copper1 andcopper3 .

Shortcuts. There module provides shortcuts to directly search for an expression without compiling the pattern
into a pattern object:

>>> match = re.search(’[AP]{1,2}D’, "RPAD")
>>> match.group(0)
’PAD’

You can also directly get the occurrences of a pattern object in a string:

>>> pattern = re.compile(’[AP]{1,2}D’, )
>>> pattern.findall("RPAD")
[’PAD’]

or even the occurences of an expression, without compiling the pattern:
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>>> re.findall(’[AP]{1,2}D’, "RPAD")
[’PAD’]

Figure 16.7 summarizesre module objects and methods to perform pattern searching.

Figure 16.7. Python regular expressions: classes and methods summary

Expression Pattern object Match object Occurrences

compile()

split(), findall(), sub()

match(), search()

split(), findall(), sub()

match(), search()

start(), end(), span()

group()pattern

re

Search modes.

Text substitutions.

16.5.3. Prosite

This section presents the Prosite classes in Biopython, which have a common interface with the Python pattern
module.

16.5.3.1. Prosite Dictionary

Biopython defines several dictionaries to access biological databases. Having a dictionary means that you can
fetch an entry by:
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entry = prosite[’PS00079’]

For this to work, you first need to create the dictionary:

prosite = Bio.Prosite.ExPASyDictionary()

As you can guess by the name of the module, you actually fetch the Prosite entry on the Web. You could also fetch
the Prosite entry from a local database with the golden program (see ???). The entry fetched above is actually a
string. In order to have the dictionary return a record, you must rather create it like this:

prosite = Bio.Prosite.ExPASyDictionary(parser=Bio.Prosite.RecordParser())

16.5.3.2. Prosite patterns

The Bio.Prosite package defines aPattern class that enables to create patterns which may be searched
for in sequences objects, as in there Python module for regular expressions. The result of a search is a
PrositeMatch , that behaves in a way similar to a regular expression match.

16.5.4. Searching for patterns and parsing

As a conclusion, let us summarize how pattern searching and parsing interact when analyzing text. Basic text
analysis is performed by searching for patterns, that are extracted (or scanned) from a text. Then patterns
occurrences may be analyzed (or parsed) as a more general structure. In more complex parsing architectures,
as the ones that have been introduced in Section 16.4, it is theparserengine which drives the process, by asking a
scannerto feed him with basic token found in the text. In such systems, regular expressions are defined and used
in the scanner.
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Chapter 17. Object-oriented programming

17.1. Introduction
This chapter introduces objects, that are a way to organize code and data, and classes, that are a mechanism to
describenew kinds of objects. We start by the description of what objects, classes and methods are, based on
an example (Section 17.2). We then show its class definition (Section 17.3). We then explain how to combine
objects in order to build an application (Section 17.4). Finally, technical aspects of classes and objects in Python
are presented (Section 17.5).

In the next chapter (Chapter 18), concepts related to object-oriented design will be developped.

17.2. What are objects and classes? An example
Our example is a class that handles DNA sequences.

17.2.1. Objects description

Let us first start by describing ourDNAobject. Figure 17.1 shows an internal and schematic representation of
such an object nameds1 . The object is actually represented in this diagram as a box enclosingattributes:
the name of the sequence (for instance ’seq1’) is stored in aname attribute, and the sequence characters (e.g
’aaacaacttcgtaagtata’) is stored in aseq attribute. Attributes are the same as variables, except that they are
associated to an object.

Figure 17.1. A DNA object

s1

seq

name

17.2.2. Methods

As it is described so far, theDNAobject is just a kind of record to group data. There are other ways of grouping
data in Python: you can either use a list, or a dictionary:

>>> seq_record = {’name’: ’seq1’, ’seq’: ’aaacaacttcgtaagtata’}
>>> seq_record[’name’]
’seq1’
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but an object is actually more than just that. As shown in Figure 17.2 (and as stated in Section 6.1), an object is
indeed more than just a value or a record of values: it can "do" things, and it "knows" what it can do, or. In other
words, it has an associated behaviour. This behaviour is described by functions that are associated to it, and these
functions are calledmethods. For instance, ourDNAobject can perform operations: it can translate its sequence
or it can compute its GC percent by calling thegc function:

>>> s1.gc()
0.26

So, available operations are an important aspect of objects, that we need to add in our representation. In Figure
17.2, methods are represented as "counters", as at the post office.

Figure 17.2. Representation showing object’s methods as counters

name

s1

seq
gc

translate

revcompl

So, with objects, not only do we have a convenient way to group data that are related, but we also have a way to
group dataand their related operationsin the same place.

Object

An object is a construction to group values and operations on these values.

17.2.3. Classes

Now, how do you define objects, such as ourDNAobject, with their attributes and methods?

In object-oriented programming, you define objects by defining a class for them.

Class

A class is anobject maker: it contains all the statements needed to create an object, its attributes, as well as the
statements to describe the operations that the object will be able to perform.

The termclasscan be somewhat misleading, for it also refers to something belonging to aclassification. In object-
oriented programming, a class can indeed also be a member of a set of classes organized in a hierarchy. This aspect
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will be introduced later (see Section 18.4), through the concept of inheritance. But for now, we will use the term
classas just a maker of objects, or an objectfactory.

Having a class defined, you can create as many objects as needed. These objects are calledinstancesof this class.
All the instances created with a given class will have the same structure and behaviour. They will only differ
regarding their state, i.e regarding the value of their attributes. Namely, names and sequences will not be the same
for all sequences objects that will be created.

Instance

Instances are objects created with a class.

The behaviour of the instances, i.e, the operations that are available for them either to modify them or to ask them
for services, is described by functions associated to the class. These functions are calledmethods.

Method

A method is afunctiondefined for a class, specifying the behaviour of the class instances.

Important

Classes and instances are not the same: the class is the maker, whereas the instance is the object being
made, according to the model defined by the class.

17.2.4. Creating objects

How are we going to createDNAobjects? You have actually already created objects throughout this course:
strings, lists, etc... However, most of the time the objects you have manipulated were not directly created by your
own code, but rather by other components: for instance the “[]” operator creates a list, the “""” operator creates a
string, theopen function creates a file handle, etc...

But the actual direct syntax to create objects or toinstantiatea class, i.e to create an instance of class, is by calling
a function with the same name as the class. So, in order to create an instance of theDNAclass we have just defined,
i.e an object which handles a DNA sequence, you do:

>>> s1 = DNA()

After theDNA() function is called, the instance of the classDNAis referred to by thes1 variable, just like with
any Python value. You could also provide more information at instantiation. Let’s say that we can create thename
andseq attributes, we can do :

>>> s2 = DNA(’seq2’, ’acaagatgccattgtcccccggcctcctgctgctgctgctctccggggcca’)
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This time, the newDNAinstance has been created with values forname andseq attributes. You can also use
keyword arguments (especially if you are no longer sure in what order they should be entered) :

>>> s2 = DNA(name=’seq2’, seq=’acaagatgccattgtcccccggcctcctgctgctgctgctctccggggcca’)

So, this creates the object and makes it available from thes2 variable. You can now use this object to callDNA
class methods, by using the dot operator:

>>> s2.gc()
0.66

The interpretor can find which classs2 belongs to, and calls thegc method that is defined for theDNAclass. You
can also actually access to object’s attributes by using the dot operator:

>>> s2.name
’seq2’
>>> s2.seq
’acaagatgccattgtcccccggcctcctgctgctgctgctctccggggcca’

17.3. Defining classes in Python
So, how do we actually define classes? For instance, let us describe theDNAclass. The program listed in Example
17.1 defines aDNAclass as defined in Figure 17.2. The definition of the class is composed of two main parts:
a header, providing the name of the class, and a body, that is composed of a list of definitions, mainly method
definitions, but sometimes also assignments (see Section 17.5.1).

Example 17.1. DNA, a class for DNA sequences

❶
class DNA:

def __init__(self, name=None, seq=None): ❷
self.name = name
self.seq = lower(seq) ❸

def gc(self):
count_c = self.seq.count(’c’) ❹
count_g = self.seq.count(’g’)
return float(count_c + count_g) / len(self.seq)

def revcompl(self):
revseq = ”
for c in self.seq:
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revseq = c + revseq ❺

revcompseq = ”
for base in revseq:

if base == ’a’:
revcompseq += ’t’

elif base == ’t’:
revcompseq += ’a’

elif base == ’c’:
revcompseq += ’g’

elif base == ’g’:
revcompseq += ’c’

return revcompseq

def translate(self, frame=0): ❻
"""
frame: 0, 1, 2, -1, -2, -3
"""
if frame < 0 :

seq = self.revcompl()
frame = abs(frame) - 1

else:
seq = self.seq

if frame > 2:
return ”

protseq = ”

for i in range(frame,len(seq) - 2,3):
codon = seq[i:i+3]
protseq += Standard_Genetic_Code[codon] ❼

return protseq

❶ This statement declares and createsDNAas a class.
❷ The__init__ method is automatically called at instance creation (see below).
❸ Initialization of instances attributes (name andseq ).
❹ This method defines how to compute the GC percent of the sequence.
❺ This method defines how to compute the reverse complement of the sequence.
❻ This method defines how to translate the DNA sequence into a protein sequence.
❼ TheStandard_Genetic_Code dictionary is defined elsewhere.

Theself parameter represents the object itself. You could of course use any other word likecarrot or ego , but
this would not help the reading of your code by others... Soself is present in the Class and methods definitions
each time the reference to the object instance is needed.
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Let us first look at one of these methods definitions, thegc method, which computes the GC percent of the
sequence:

def gc(self):
count_c = self.seq.count(’c’)
count_g = self.seq.count(’g’)
return float(count_c + count_g) / len(self.seq)

Method definitions follow exactly the same pattern as standard function definitions, except that they must have
declared a first parameter (here:self ) for referring to the instance. Indeed, an instance identificator, actually a
reference to the instance, is required in order for the statements within methods to access to the current instance
attributes: here, the access to theseq attribute is needed in order perform the count. In fact, Pythonautomatically
passes the instance reference as the first argument of a method. Hence, it is associated to the first parameter
which is theself parameter. You don’t need to specify the argument for the reference to the instance. This is
automatically done by Python. In fact, calling:

>>> s2.gc()
0.66

is equivalent to:

>>> DNA.gc(s2)
0.66

The interpretor can find which classs2 belongs to, and handles the passing of the instance reference argument
automatically.

How does the method computes its result? For this, it needs to access to the character sequence of the DNA
object. This is done by using theseq attribute, that was defined at instantiation (i.e by the__init__ method,
see below). Within the method, the attribute is available through the object by the dot operator:self.seq . This
shows that the object attributes are always available, at least as long as the object itself still exists. Attributes are
thus accessible from all the methods of the class. They are a way to share data among methods. The method also
use local variables:count_c andcount_g to compute intermediate results. These variables have a local scope,
restricted to the method’s namespace, exactly like local variables that are defined in functions.

Let us now look at thetranslate method.

def translate(self, frame=0):
"""
frame: 0, 1, 2, -1, -2, -3
"""
if frame < 0 :

seq = self.revcompl()
frame = abs(frame) - 1

else:
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seq = self.seq

if frame > 2:
return ”

protseq = ”
nb_codons = len(seq)/3

for i in range(frame,len(seq) - 2,3):
codon = seq[i:i+3]
protseq += Standard_Genetic_Code[codon]

return protseq

To call this method, you must provide the frame:

>>> s2.translate(0)
TRCHCPPASCCCCSPGP

Indeed, this method has declared aframe parameter. It thus takes two arguments:self andframe . As for the
gc method, the first parameter does not have to be specified at calling time, only the remaining ones.

Let us now finally look at the__init__ method.

def __init__(self, name=None, seq=None):
self.name = name
self.seq = lower(seq)

This is a special method, which, when defined, is called at class instantiation, e.g when you run the following
statement:

>>> s2 = DNA(name=’seq2’, seq=’acaagatgccattgtcccccggcctcctgctgctgctgctctccggggcca’)

the__init__ method defined for theDNAclass is in fact called with 3 arguments. As for the other methods, the
self argument is automatically provided by Python as a reference to the newly created instance. You don’t have
to provide an__init__ method, but it is usually the good place to put initialization statements. Initial values
for attributes can be passed as arguments and associated to attributes. A good practice is to assign them default
values, such as None. You can also notice that theseq attribute is initialized with thelower string function: the
other methods will thus not have to check for this in order to perform their computation.

17.4. Combining objects
A program is generally not built on a single object, but rather on a combination of several objects that interact
together. In theDNAexample, we can have several other kinds of objects: protein sequences, motifs, ... The
protein object could be either created from an initial sequence of protein amino-acids, or computed by the
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DNA translate method. Protein objects could have specific methods for protein sequences, such as
hydrophobicity or molecular weight. These objects will be instances of the classProtein .

First of all, let us look at how we could represent a simplifiedProtein object. Figure Figure 17.3 shows an
object having one method:mw, and 2 attributes:name andseq .

Figure 17.3. A Protein object.
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The definition of theProtein class follows:

class Protein:

weight = {"A":71.08,"C":103.14 ,"D":115.09 ,"E":129.12 ,"F":147.18 ,"G":57.06 ,"H":137.15 ,"I":113.17 ,"K":128.18 ,"L":113.17 ,"M":131.21 ,"N":114.11 ,"P":97.12 ,"Q":128.41 ,"R":156.20 ,"S":87.08 ,"T":101.11,"V":99.14 ,"W":186.21 ,"Y":163.18 ,"X": 110}

default_prosite_file = ’prosite.dat’

def __init__(self, name=None, seq=None):
self.name = name
self.seq = upper(seq)

def mw(self):
molW = 0
for aa in self.seq:

molW += Protein.weight[aa]

#add water at the end of protein
molW += 18.02
#convert in Kda
molW = molW / 1000

return molW

You can notice that the class starts by the definition ofweight anddefault_prosite_file variables. As
we will see later, thisclass variableis available to all instances of the class.

Now, the DNA objects knows how to be translated, right? So it would be more clever for theDNA class
translate method to return aProtein object... The new definition of thetranslate method is:

def translate(self, frame=0):
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"""
frame: 0, 1, 2, -1, -2, -3
"""
if frame < 0 :

seq = self.revcompl()
frame = abs(frame) - 1

else:
seq = self.seq

if frame > 2:
return ”

protseq = ”
nb_codons = len(seq)/3

for i in range(frame,len(seq) - 2,3):
codon = seq[i:i+3]
protseq += Standard_Genetic_Code[codon]

new_protein = Protein(name=self.name + " translation", seq=protseq)

return new_protein

Look at the returned value: it is now aProtein object. The argument for theseq parameter of theProtein
class’s__init__ method is the value of the newly computedprotseq , and the argument for thename is
constructed from theProtein object’s name.

In theProtein object, we might also be interested in keeping the reference to the initialDNAobject. This can
help to analyze the protein sequence later. Figure 17.4 shows theDNAandProtein objects, and the link between
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them. Now, theProtein object has 3 attributes:name, seq anddna .

Figure 17.4. Protein and DNA objects.
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The__init__ method of theProtein class is now:

def __init__(self, name=None, seq=None, dna=None):
self.name = name
self.seq = upper(seq)
self.dna = dna

The final code forProtein object instantiation in thetranslate method is now:

new_protein = Protein(name=self.name + " translation", seq=protseq, dna=self)

return new_protein

Look at the value provided for thedna parameter of theProtein __init__ method. It is a reference to the
DNAobject, i.e:self . Notice that none of the parameters is mandatory (exceptself of course). In particular,
thedna parameter does not have to be provided when theProtein is directly created from a file, as opposed to
translated from aDNAobject.

17.5. Classes and objects in Python: technical aspects
The aim of this section is to clarify technical aspects of classes and objects in Python.
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17.5.1. Namespaces

Classes and instances have their own namespaces, that is accessible with the dot (’.’) operator. As illustrated by
Figure 17.5, these namespaces are implemented by dictionaries, one for each instance, and one for the class (see
also [Martelli2002]).

Figure 17.5. Classes and instances namespaces.
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Instances attributes. As we have learnt, a class may define attributes for its instances. For example, attributes of
s1 , such as thename, are directly available through the dot operator:

>>> s1.name
’seq1’

The dictionary for the instance attributes is also accessible by its__dict__ variable, or thevars() function:

>>> s1.__dict__
{’seq: ’aaacaacttcgtaagtata’, ’name’: ’seq1’}
>>> vars(s1)
{’seq’: ’aaacaacttcgtaagtata’, ’name’: ’seq1’}

Thedir() command lists more attributes:

>>> dir(s1)
[’__doc__’, ’__init__’, ’__module__’, ’gc’, ’translate’, ’name’, ’seq’]

because it is not limited to the dictionary of the instance. It actually also displays its class attributes, and recursively
the attributes of its class base classes (see Section 18.4). You can add attributes to an instance that were not defined
by the class, such as theannotation in the following:

>>> s1.annotation = ’an annotation’
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>>> s1.__dict__
{’seq: ’aaacaacttcgtaagtata’, ’name’: ’seq1’, annotation: ’an annotation’}

Adding attributes on-the-fly is not something that is available in many object-oriented programming languages!
Be aware that this type of programming should be used carefully, since by doing this, you start to have instances
that have different behaviour, at least if you consider that the list of attributes defines a behaviour. This is not the
same as having a differentstateby having different values for the same attribute. But this matter is probably a
topic of discussion.

Class attributes. It is also possible to define attributesat the class level. These attributes will be shared by all the
instances (Figure 17.6). You define such attributes in the class body part, usually at the top, for legibility:

class Protein:
...
weight = {"A":71.08,"C":103.14 ,"D":115.09 ,"E":129.12 ,"F":147.18 ,"G":57.06 ,"H":137.15 ,"I":113.17 ,"K":128.18 ,"L":113.17 ,"M":131.21 ,"N":114.11 ,"P":97.12 ,"Q":128.41 ,"R":156.20 ,"S":87.08 ,"T":101.11,"V":99.14 ,"W":186.21 ,"Y":163.18 ,"X": 110}

default_prosite_file = ’prosite.dat’
...

To access this attribute, you use the dot notation:

>>> Protein.default_prosite_file
’prosite.dat’
>>> Protein.weight
{"A":71.08,"C":103.14 ,"D":115.09 ,"E":129.12 ,"F":147.18 ,"G":57.06 ,"H":137.15 ,"I":113.17 ,"K":128.18 ,"L":113.17 ,"M":131.21 ,"N":114.11 ,"P":97.12 ,"Q":128.41 ,"R":156.20 ,"S":87.08 ,"T":101.11,"V":99.14 ,"W":186.21 ,"Y":163.18 ,"X": 110}
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Figure 17.6. Class attributes in class dictionary
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You can also access to this attribute through an instance:

>>> p1.default_prosite_file
’prosite.dat’

You cannotchange the attribute through the instance, though:

>>> p1.default_prosite_file = ’myfile.dat’ ❶
>>> Protein.default_prosite_file
’prosite.dat’

❶ This just creates a newdefault_prosite_file attribute for thep1 instance, which masks the class
attribute, by the way.
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The class attributes are displayed by thepydoc command, as opposed to the instance attributes (see Section
17.5.5).

Class methods are referenced in the class dictionary: but what is theirvalueactually? As shown in Figure 17.6,
the class dictionary entries for methods are pointing to standard Python functions. When accessing to a method
through an instance name, such as inp1.mw, there is an intermediate data structure, that itself points to the class
and the instance. Objects in this data structure are calledbound methods:

>>> s1.gc
<bound method DNA.gc> of <__main__.DNA instance at 0x4016a56c>

They are said to be bound, because they are bound to a particular instance, and know about it. This is really
important, for it is the only way to know what to do, and on which object to operate.

Figure 17.7. Classes methods and bound methods
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17.5.2. Objects lifespan

Once it is created, an object’s lifespan depends on the fact that there are references on it. Namely, as opposed to
variables present within functions, an object can still exist after exiting the function or method where it has been
created, as long as there is a valid reference to it, as shown in the following example:

class C1: pass

class C2:
def show(self):

print "I am an instance of class ", self.__class__

def create_C2_ref_in(p):
p.c2 = C2() ❶
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c1 = C1()
create_C2_ref_in(c1) ❷
c1.c2.show() ❸

❶ This function creates an instance of classC2 and stores its reference in an attribute ofp, an instance of class
C1.

❷ Creation of theC2 instance by callingcreate_C2_ref_in
❸ This statement displays: "I am an instance of class __main__.C2"

As you can observe, theC2 instance exists after exiting thecreate_C2_ref_in function. It will exist as long
as its reference remains in thec1.c2 attribute. If you issue:

c1.c2 = None

There will be no reference left to ourC2 instance, and it will be automatically deleted. The same would happen if
you would issue an additional call to thecreate_C2_ref_in function:

create_C2_ref_in(c1)

it would overwrite the preceeding reference to the formerC2 instance, and delete it. You can check this by asking
thec1.c2 reference for its identity:

id(c1.c2)

Of course, another way to delete an object is to use thedel function:

del c1.c2

17.5.3. Objects equality

Instances equality cannot be tested by the== operator.If we come back to our DNA class:

>>> a = DNA(’seq1’, ’acaagatgccattgtc’)
>>> b = DNA(’seq1’, ’acaagatgccattgtc’)
>>> a.__dict__
{’name’: ’seq1’, ’seq’: ’acaagatgccattgtc’}
>>> b.__dict__
{’name’: ’seq1’, ’seq’: ’acaagatgccattgtc’}
>>> a == b
False
>>> a.__dict__ == b.__dict__
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True

This means that the equality operator must be defined by the programmer. We will see the__eq__ special method
later in Section 18.3.3.

Instances identity means that two objects are in factthe sameobject, or more exactly, that two variables refer to
the same object.

>>> a = DNA(’seq1’, ’acaagatgccattgtc’)
>>> b = a
>>> b == a
True
>>> b is a
True

As for all Python objects, identity implies equality.

17.5.4. Classes and types

Types in Python include integer,floating-point numbers, strings, lists,dictionaries, etc... Basically, types and
classes are very similar. There is a general difference between them, however, lying in the fact that there are
literals for built-in types, such as:

34
’a nice string’
0.006
[7, ’a’, 45]

whereas there is no literal for a class. The reason for this difference between types and classes is that you can
define a predicate for recognizing expressions of a type [Wegner89], while, with class, you cannot, you can only
define collections of objects after a template.

As shown in Figure 17.8, the Pythontype() can be used to know whether a variable is a class or an instance.
It will very basically answerClassType or InstanceType , as defined in moduletypes , but it will not tell
you which class an instance belongs to.

Figure 17.8. Types of classes and objects.
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17.5.5. Getting information on classes and instances

It is important to know what classes are available, what methods are defined for a class, and what arguments can
be passed to them. First, classes are generally defined in modules, and the modules you want to use should have
some documentation to explain how to use them. Then, you have thepydoccommand that lists the methods of the
class, and describes their parameters. The following command displays information on theDNAclass, provided it
is in thesequence.py file:

pydoc sequence.DNA

See also the embedding module, which might bring additional documentation about related components. This
may be important when several classes work together, as is described in Section 17.4.

When you consult the documentation of a class with thepydoccommand, you get most of the time a strange list of
method names, such as__str__ or __getitem__ . These methods are special methods to redefine operators,
and will be explained in the next chapter on object-oriented design (Section 18.3.3).

Caution: the defined instances attributes will not be listed by pydoc, since they belong to the instances rather than
to the class. That is why they should be described in the documentation string of the class. If they are not, which
sometimes happens..., run the Python interpretor and create an instance, then ask for its dictionary or use thedir()
command:

>>> s1 = DNA()
>>> dir(s1)
[’__doc__’, ’__init__’, ’__module__’, ’gc’, ’revcompl’, ’translate’, ’name’, ’seq’]

Information on instances. There are some mechanisms to know about the class of a given instance. You can use
the special attribute__class__ :

>>> s1 = DNA()
>>> s1.__class__
class __main__.DNA at 0x81d1d64>

You can even use this information to create other instances:

>>> s2=s1.__class__()
>>> s2
__main__.DNA instance at 0x8194ca4>

This can be useful if you need to create an object of the same class of another source object, without knowing the
class of the source object. You can also ask whether an object belongs to a given class:

>>> isinstance(s1,DNA)
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True

As mentionned above, the Pythontype() will not provide the class of an instance, but just:InstanceType
(see Figure 17.8).
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Chapter 18. Object-oriented design

18.1. Introduction
We first describe general software engineering guidelines to design components (Section 18.2.5). We next move
on to the general question about why and how to design classes, and more specifically, how to design newabstract
data types(Section 18.3). We will then re-discuss the issue of flexibility (Section 18.5) and describe inheritance
(Section 18.4). Last, we will introduce the design patterns catalog (Section 18.6), which are well-known design
solutions to standard problems in object-oriented programming.

18.2. Components

18.2.1. Software quality factors

The topics introduced in this section address some of the issues of software quality, and how Python can help on
this matter.

Before entering into details, let us just summarize some important concepts (you can find a good and more
exhaustive description in [Meyer97]). There is no absolute quality in software: depending on the context, scale,
scope and goals of the program being developped, you might very well either write on-the-fly short pieces of code
to solve a temporary problem, or spend a significant effort to have your application follow an industrial design
process. So, rather than only a global so-called standard that should be applied for each program you write, there
are a fewquality factorsto be evaluated according to the actual needs of the project. Among these factors, one
usually distinguish between internal and external factors.Externalquality factors are the ones that corresponds to
visible requirements, directly important for the user of the software, such asvalidity , robustnessor efficiency.
Internal quality factors are properties of the code itself, such as legibility or modularity. In fact, internal factors
often indirectly help to get external quality. Some factors, such asreusability, extensibility andcompatibility ,
that we will study more thoroughly here, belong to external quality factors in the sense that they can be required
by the users of a software library or the programmers of a shared source code; they are also important internal
quality factors in the sense that they make the internal quality of the source code better. The aim of this chapter is
mainly to describe these factors, as well as internal quality factors.

18.2.2. Large scale programming

Theoretically, in order to get a program that performs a given task and solves the problem you have specified, a
basic set of instructions such as: branching, repetitions, expressions and data structures can be sufficient. Now,
the programs that you produce can become a problem by themselves, for several reasons:

• They can become very large, resulting in thousand lines of code where it is becoming difficult to make even a
slight change (extensibilityproblem).
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• When an application is developped within a team, it is important for different people to be able to share the
code and combine parts developped by different people (compatibility) ; having big and complex source files
can become a problem.

• During your programmer’s life, or within a team, you will very often have to re-use the same kind of
instructions set: searching for an item in a collection, organizing a hierarchical data structure, converting data
formats, ...; moreover, such typical blocks of code have certainly already been done elsewhere (reusability).
Generally, source code not well designed for re-use can thus be a problem.

So, depending on the context of the project, there are some issues which are just related to themanagement of
source codeby humans, as opposed to the specification of the task to perform. And if you think about it, you
probably tend to use variable names that are relevant to your data and problem, aren’t you? So, why? This is
probably not for the computer, but, of course, rather for the human reader. So, in order to handle source structure
and management issues, several conceptual and technical solutions have been designed in modern programming
languages. This is the topic of this chapter.

Let us say that we have to develop source code for a big application and that we want this source code to be spread
and shared among several team members, to be easy to maintain and evolve (extensible), and to be useful outside
of the project for other people (reusable). What are the properties a source code should have for these purpose?

• it should be divided in small manageable chunks

• these chunks should be logically divided

• they should be easy to understand and use

• they should be as independant as possible: you should not have to use chunk A each time you need to use
chunk B

• they should have a clearinterfacedefining what they can do

The most important concept to obtain these properties is calledmodularity, or how to build modular software
components. The general idea related to software components is that an application program can be built by
combining small logical building blocks. In this approach, as shown in figure Figure 18.1, building blocks form a
kind of high-level language.
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Figure 18.1. Components as a language
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18.2.3. Modularity

The simplest form of modularity is actually something that you already know: writing a function to encapsulate a
block of statements within a logical unit, with some form of generalization, or abstraction, through the definition
of some parameters. But there are more general and elaborated forms of components, namely: modules and
packages.

So, what is modularity? As developped in [Meyer97], modularity is again not a general single property, but is
rather described by a few principles:

• A few interfaces: a component must communicate with as few other components as possible. The graph of
dependencies between components should be rather loosely coupled.

• Small interfaces: whenever two components communicate, there should be as few communication as possible
between them.

• Explicit interfaces: interfaces should be explicit. Indirect coupling, in particular through shared variables,
should be made explicitly public.

• Information hiding : information in a component should generally remain private, except for elements
explicitly belonging to the interface. This means that it should not be necessary to use non public attributes
elements of a component in order to use it. In languages such as Python, as we will see later, it is technically
difficult to hide a component’s attributes. So, some care must be taken in order todocumentpublic and private
attributes.
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• Syntactic units: Components must correspond to syntactic units of the language. In Python, this means that
components should correspond to known elements such as modules, packages, classes, or functions that you
use in Python statements:

import dna
from Bio.Seq import Seq

dna , Bio , Bio.Seq andSeq are syntactic units, not only files, directories or block of statements. In fact,
Python really helps in defining components: almost everything that you define in a module is a syntactic unit.

You can view this approach as though not only the user of the application would be taken into account, but also
the programmer, as the user of an intermediate level product. This is why there is a need forinterfaces designalso
at the component level.

18.2.4. Methodology

These properties may be easier to obtain by choosing an appropriate design methodogy. A design methodoly
should indeed:

• help in defining components by successivedecomposition;

• help in defining components that are easy tocombine;

• help in designingself-understandablecomponents: a programmer should be able to understand how to use a
component by looking only at this component;

• help in definingextensiblecomponents; the more independant components are, the more they are easy to
evolve; for instance, components sharing an internal data structure representation are difficult to change,
because you have to modify all of them whenever you change the data structure.

18.2.5. Reusability

Programming is by definition a very repetitive task, and programmers have dreamed a lot of being able to pick off-
the-shelves general purpose components, relieving them from this burden of programming the same code again
and again. However, this objective has, by far, not really been reached so far. There are several both non technical
and technical reasons for this. Non-technical reasons encompass organisational and psychological obstacles:
although this has probably been reduced by the wide access to the Web, being aware of existing software, taking
the time to learn it, and accepting to use something you don’t have built yourself are common difficulties in reusing
components. On the technical side, there are some conditions for modules to be reusable.

1.Flexibility: One of the main difficulty for making reusable components lies in the fact that, while having the
impression that you are again programming the same stereotyped code, one does not really repeat exactly the
same code. There are indeed slight variations that typically concern to following aspects (for instance, in a
standard table lookup):
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• types: the exact data type being used may vary: the table might contain integers, strings, ...

• data structures and algorithms may vary: the table might be implemented with an array, a dictionary, a
binary search tree, ... ; the comparison function in the sort procedure may also vary according to the type
of the items.

So, as you can understand from these remarks, the moreflexible the component is, the more reusable it is.
Flexibility can be partly obtained by modularity, as long as modules are well designed. However, in order to
get real flexibility, other techniques are required, such as genericity, polymorphism, or inheritance, that are
described in Section 18.5.

2. Independancy towards the internal representation: by providing a interface that does not imply any specific
internal data structure, the module can be used more safely. The client program will be able to use the same
interface, even if the internal representation is modified.

3.Group of related objects: it is easier to use components when all objects that should be used together (the
data structures, data and algorithms) are actually grouped in the same component.

4.Common features: common features or similar templates among different modules should be made shareable,
thus making the whole set of modules more consistent.

18.3. Abstract Data Types

18.3.1. Definition
What is an abstract data type? Well, a data type is what we have just presented in chapter Chapter 17: in
Python, as in many object-oriented language, it is a class. So, whyabstract? One of the main objectives in
component building, as we have seen in section Section 18.2, is to provide components that a programmer (you,
your colleagues, or any programmer downloading your code) can be confident in. In order to get this programmer,
who is aclient of your code, confident into your class, you have to make it as stable as possible, and the best
method to get a stable class is to define it at a level whereno implementation decision is visible. In other words,
defining a class should consist in defining a data type providing some abstractservices, whoseinterfaceare clearly
defined in term of parameters and return value and potential side effects. The advantages of this approach are the
following:

• The implementor of the class can change the implementation for maintenance, bug fixes or optimization
reasons, without disturbing the client code.

• The data type is defined as a set of high-level services with asemantic contractdefining both the output that
is provided and the input that is required from the client. This actually correspond to the general definition of
a type in programming: a type is defined as a set of possible values and aset of operationsavailable on these
values.

Among the methods defined in the interface of a data type, there are methods that build or change the state of the
corresponding object, which are calledconstructorsandmodificators, and there are methods to access the object,
which are calledaccessors.
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Example 18.1. A Stack

Our example is a stack. It is directly inspired from [Meyer97], chapter 6.

Stacks serve to pile up objects of any kind, and take them out according to the rule "last in, first out" (LIFO).
Imagine a pile of plates at home, in your cupboard, the safest way to take a plate out is to take the last one put
in (Figure 17.8). Such structures are omni-present in programing, they serve to move along graphs, to compile
programs, etc...

Figure 18.2. A stack

put remove

Stacks can be implemented in different ways: you can use a list, and either add the new item at the beginning or
at the end of the list.

Conceiving an abstract data type (ADT) for the stack consists in describing the functions needed making
abstractionof the implementation choice that will be made at the end (and that may change). Indeed in all
cases, the basic services are the same, and can be given common names, that do not "betray" how the list is used
"inside" of the code. The set of services is listed in Table 18.1.

Table 18.1. Stack class interface
Name Input Output Description
put a stack and an item a stack places the item on top of the

stack
remove a stack a stack if stack is not empty,

removes the last item
item a stack an item if stack is not empty, returns

the item on top of the pile,
without removing it

empty a stack a Boolean tells whether the stack is
empty

make a stack creates a new stack

The description provided by Table 18.1 should suffice for the client to use the class. What is more important here,
is that the client does not have to know anything about the internal representation of the stack.

In this ADT accessorsare: item andempty , constructoris make , andmodificatorsare:put andremove .

The next step,once this description of the ADT is made for the client, consists inspecifyingthe ADT, that is,
describing in formal or mathematical language what the functions are doing. This involves four steps:
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• Types: this corresponds in Python to the classes that are used for the ADT. In our example there is one class,
Stack.

• Functions: That is their names and the input and output they have, as shown in Table 18.1, first three columns.

• Axioms: The rules to which the functions obey, and that are sufficient to describe them. For the stack, these
axioms are, for any stack s and element e:

• item(put(s, e))=e

• remove(put(s, e))=s

• empty(make) is True

• empty(put(s, e) is False

• Pre-conditions: The functions we need will not operate under all conditions. For example, you cannot remove
an element from an empty stack. These pre-conditions can be enumerated as follows for the stack:

• remove(s) requires : not empty (s)

• item(s) requires not empty(s)

Axioms and pre-conditions formulate more precisely what is said inthe fourth column of Table 18.1

18.3.2. Information hiding

It is a good design practice to protect an instance local data. Why is that? The first reason is that it makes the
interface of the class more easy to grasp. The client just knows what needs to be known in order for the component
to be used properly. A second reason is that class data should rather be handled by the class methods: there might
be some coherence to be maintained among different attributes, that a method can check. Another important
reason is to avoid the risk of collisions, that could happen between the class and the potential base classes, as we
will explain in Section 18.4, devoted to inheritance.

The problem is that there is no real mechanism in Python to prevent a client code from accessing to an instance
attributes, as there are in other languages (such as Java or C++), where you can declareprivate and public
attributes. Python provides just the following: if you name a variable with a ’__’ prefix and no ’_’ suffix, such as:

__list = []

within a class named, e.g:Stack , Python automatically changes it to:_Stack__list . You can still access it,
but you are aware that you are probably doing something odd, and it can help to avoid name collisions.

Another way to distinguishpublicandprivateattributes and methods is to prefix the private ones with a single ’_’
character. This does not provoke any automatic addition by Python, but it is warning the reader that this part of the

159



Chapter 18. Object-oriented design

code is private. Another style matter is the naming of classes, where it is a good idea to capitalize the first letter of
class names, to distinguish them from variable or function names. Be aware finally that some methods in Python
are framed by double ’__’ on both side, they are calledspecial methodsand described in the next p aragraph.

The lesson to be learnt is that attributes you want to be accessible should be mentionned explicitely, and
documented as such.

Now that the ADT is specified, that we know which attributes and methods are public or private, We can turn to
the implementation part of our example. As shown in Example 18.2, we have decided to use a Python list, and to
add new elements to the end of this list.

Example 18.2. Stack class

class Stack:
"""
A class to handle stacks
"""

def __init__(self):
self._list=[]

def put(self, elem):
"""
places an item on top of the stack
"""
self._list.append(elem)

def remove(self):
"""
if not empty, removes the last item placed on the stack
else does not do anything
"""
if self._list:

self._list.pop()

def item(self):
"""
if not empty, returns the item on top of the stack
without removing it
else does not do anything
"""
if self._list:

return self._list[-1]

def empty(self):
"""
tells if the stack is empty
"""
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if len(self._list)==0:
return True

return False

18.3.3. Using special methods within classes

The usual Python operators, such as ’+’, the ’[ ]’ operator to access an item or a slice, the assignment ’=’ operator,
the equality ’==’ operator, but also ’print’ etc..., are defined withspecial methodsthat have different definitions for
different types. Indeed adding two integers is not the same as adding two strings. It is very convenient to redefine
these special methods inside the classes created with Python. The very basicspecial methodsencountered in most
classes is the one allowing to use ’print’.

Suchspecial methodshave obligate names, and are framed by ’__’, such as __str__ for ’print’. A set a very
precious pages in the book ’Python. Essential reference’ concerns all the tables (3.7 to 3.10) listing these obligate
names. Here below in Table 18.2, we will list a small number of examples.

Table 18.2. Some of the special methods to redefine Python operators

Operator Special method Parameters Description
[] __getitem__ self, k access to item or slice

specified byk
== __eq__ self, other test for equality between 2

objects
. __getattr__ self, name access to anon existing

attribute namedname
. and = __setattr__ self, name, value modification of an attribute
len() __len__ self length computation
print __str__ self string form for instance

value
del __del__ self deletion of an instance

Example 18.3. Defining operators for the DNA class

Remember what we said in Section 17.5.3: different objects, even with the same state, i.e with the same attributes
values, are considered as not equal by Python. There is a way however to specify how the ’==’ operator should
behave for your class. The following code redefines the ’==’ operator as returning True whenever thename and
seq attributes are equal.

class DNA:

...

def __eq__(self, other):
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if self.name == other.name and self.seq == other.seq:
return True

return False

>>> s1 = DNA(name=’seq2’, seq=’acaagatgccattgtcccccggcctcctgctgctgctgctctccggggcca’)

>>> s2 = DNA(name=s1.name, seq=s1.seq)
>>> s1 == s2
True
>>> s1 is s2
False

Another important operator that could be useful for sequences is the ’[]’ operator. for strings, this operator enables
to access a character at a specific position. This operator is defined by the__getitem__ special method.

class DNA:

...

def __getitem__(self, i):
return self.seq[i]

>>> print s1[3]
’a’

Exercise 18.1. Operators for the DNA class

Which additional operators could you define forDNAclass? Implement 1 or 2 of them.

18.4. Inheritance: sharing code among classes

18.4.1. Introduction

What we have seen so far,object-basedprogramming, consists in designing programs with objects, that are built
with classes. In most object-oriented programming languages, you also have a mechanism that enables classes to
share code. The idea is very simple: whenever there are some commonalities between classes, why having them
repeat the same code, thus leading to maintenance complexity and potential inconsistency? So the principle of
this mechanism is to define some classes as being the same as other ones, with some differences.

Example 18.4. Inheritance example (1): sequences

So far, we have design two different classes for different types of sequences: indeed, having all the methods
defined only for protein sequences also available for DNA sequences can be considered a problem. At the same
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time, some functionalities are common to both types of sequences: cleaning the sequence, producing a Fasta
format to name a few. So we keep our two classes to deal with DNA and protein sequences, and we add a new
class:Sequence , which will be a common class to deal with general sequence functions. In order to specify that
aDNA(or aProtein ) is aSequence in Python is:

class DNA(Sequence):

The DNAclass is called asubclass, and theSequence is called asuperclassor a base class. Following the
class statement, there areonly the definitions specific to theDNAor Protein classes: you do not need to
re-specify the other ones. The following code shows how to specify theSequence superclass.

class Sequence:

def __init__(self, name=None, seq=None):
self.name = name
self.seq = seq
self.clean()

def clean(self):
seq = ""
for c in self.seq:

if c in self.alphabet:
seq += c

self.seq = seq

def __str__(self):
return ">"+self.name+"\n"+self.seq

def __getitem__(self, i):
return self.seq[i]

def getname(self):
return self.seq

def getseq(self):
return self.seq

class DNA(Sequence):

alphabet = "atcg"

def gc(self):
"""GC percent"""
...

def revcompl(self):
"""reverse complement"""
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...

def translate(self):
"""translation into a protein"""
...

class Protein(Sequence):

weight = {"A":71.08,"C":103.14 ,"D":115.09 ,"E":129.12 ,"F":147.18 ,"G":57.06 ,"H":137.15 ,"I":113.17 ,"K":128.18 ,"L":113.17 ,"M":131.21 ,"N":114.11 ,"P":97.12 ,"Q":128.41 ,"R":156.20 ,"S":87.08 ,"T":101.11,"V":99.14 ,"W":186.21 ,"Y":163.18 ,"X": 110}

alphabet = weight.keys()

def mw(self):
molW = 0
for aa in self.seq:

molW += self.weight[aa]

molW += 18.02
molW = molW / 1000

return molW

Look at how we use these definitions:

>>> s = DNA("s1", "attgccctt")
>>> s.gc()
66.66
>>> print s
>s1
attgccctt

The__str__ method that is called when issuing aprint statement is not defined for theDNAclass. So python
looks up one level further, finds a definition at theSequence class definition level and calls it. Provided with
theself reference to the object, exactly the same way as forDNAclass methods, it can access to the attributes in
order to produce a printable string of the object.

Theclean method is a common method, except that it uses a specific alphabet for each type of sequence. This
is why each subclass must define analphabet class attribute. When referring toself.alphabet , python
looks up in the object’s namespace first, then one level up in the class namespace and finds it.

Now look carefuly at the__init__ method: it is now defined in the superclass. There are indeed common
things to do for bothDNAandProtein classes: attributes initialization, sequence cleaning, ... So it is enough
to define the__init__ method at the superclass level: whenever the__init__ method, or any method is not
defined at the subclass level, it is the method at the superclass level which is called (see below Section 18.4.1.2).
But, remember, the DNA sequence is supposed to be in lowercase, whereas the protein sequence is in uppercase.
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How can we do that? The idea is to define an__init__ method at the subclass level that calls the__init__
method of the superclass, and then proceed to actions specific to theDNAor theProtein sequences.

class Sequence:

def __init__(self, name=None, seq=None):
self.name = name
self.seq = seq
self.clean()

...

class DNA(Sequence):

def __init__(self, name=None, seq=None):
Sequence.__init__(self, name, lower(seq))

...

class Protein(Sequence):

def __init__(self, name=None, seq=None, dna=None):
Sequence.__init__(self, name, upper(seq))
self.dna = dna # when called by DNA.translate()

...

18.4.1.1. Overloading

Let us decide that a genericmwmethod can be generalized and put at theSequence class level. This way, a
potentialRNAsubclas ofSequence will have a pre-definedmwmethod, common to all the molecular sequences.
We do not need anymwmethod at theProtein level anymore. But, since the computation of the molecular
weight differs slightly for DNA sequences, we define a specificmwmethod in theDNAclass.

class Sequence:

def mw(self):
molW = 0
for c in self.seq:

molW += self.weight[]

return molW

...

class DNA(Sequence):
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def mw(self):
"""
Computes the molecular weight of the 2 strands of a DNA sequence.
"""
molW = 0
for c in self.seq:

molW += self.weight[]

for c in self.revcompl():
molW += self.weight[]

return molW

...

When a method is redefined (oroverriden) in the subclass, which is the case of themwmethod, it is said that the
method isoverloaded. This means that, according to the actual class of a sequence instance, which can be either
DNAor Protein , the method actually called can vary.

Overloading

Overloading a method is to redefine at a subclass level a method that exists in upper classes of a class hierarchy.

Another term that is used in object-oriented programming is the term: "polymorphism". "Polymorphism" litteraly
means: several forms. In other words, the namemwhas several meanings, depending on the context of the call.

Polymorphism

A method is said to be polymorphic if it has several definitions at different levels of a class hierarchy.

The term "polymorphism" is also used about operators. The ’+’ operator, for instance, is polymorphic in the sense
that it refers to different operations when used with strings and integers.

18.4.1.2. How does it work? Dynamic binding.

As we said above, by declaringDNAas a subclass ofSequence , you do not need to re-specify inDNAall the
methods that are already defined inSequence . The way it works is that Python looks up methods starting from
the actual class of the object, for instanceDNaand, if not found, by looking up further inSequence super class
for the needed method or attribute. So, when calling:

>>> my_dna.gc()
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python looks up for thegc method (Figure 18.3). Python finds it in the current class. When looking up for other
methods, such as the__str__ method, which is not defined in theDNAclass, Python follows the graph of base
classes (Figure 18.4). Here, we only have one:Sequence , where__str__ is defined.

Figure 18.3. Dynamic binding (1)

DNA __dict__

__bases__

Sequence clean
__str__

__dict__

gc

__class__

s1
s1.gc()

translate
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Figure 18.4. Dynamic binding (2)
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Forms of inheritance. There are two forms of inheritance:extensionand specialisation. In other words,
inheritance can be used to extend a base class adding functionalities, or to specialise a base class. In the case
of the DNAclass, it is rather an extension. Sometimes, the termsubclassis criticized because, in the case of
extension, you actually providemoreservices, rather than asubset. The term subclass fits better to the case of
specialization, where the subclass addresses a specific subset of the base class potential objects (for instance, dogs
are a subset of mammals).
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UML diagrams. Classes relationships (as well as instances relationships, not represented here) can be represented
by so-called UML diagrams, as illustrated in Figure 18.5.

Figure 18.5. UML diagram for inheritance

DNA

Sequence

Protein

18.4.1.3. Multiple inheritance

In Python, as in several programming language, you can have a class inherit from several base classes. Normally,
this happens when you need to mix very different functionalities. For instance, you want to wrap your class with
a class that provides tools for testing (Figure 18.6), or services for persistence. Inheriting from classes that come
from the same hierarchy can be tricky, in particular if methods are defined everywhere: you will have to know how
the interpretor choose a path in the classes graph. But this case is more like a theoretical limit case, that should
not happen in a well designed program.

Figure 18.6. Multiple Inheritance

Testing A

B

18.4.2. Discussion
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Benefits of inheritance.

• Regardingflexibility, the inheritance mechanism provides a convenient way to define variants at the method
level: with inheritance indeed, themethods become parameters, since you can redefine any of them. So you
get more than just the possibility of changing a parameter value.

• Regardingreusability, inheritance is very efficient, since the objective is to reuse a code which is already
defined. Components designed with the idea of reuse in mind very often have a clean inheritance hierarchy in
order to provide a way for programmers to adapt the component to their own need.

• Inheritance also provides an elegantextensibilitymechanism, by definition. It lets you extend a class without
changing the code of this class, or the code of the module containing the class.

Combining class or combining objects?Using inheritance is not mandatory. The main risk of using it too much
is to get a complex set of classes having a lot of dependencies and that are difficult to understand. There are
generally two possibilities to get things done in object-oriented programming:

• Inheritance:you combine classes in order to get a "rich" class providing a set of services coming from each
combined class.

• Composition:you combine objects from different classes.

The use of composition instead of inheritance is also illustrated by the design patterns from [Gamma95], that are
introduced in Section 18.6.

Problem with inheritance for extension. When using inheritance to extend a base class, you might want to have
a method in the subclass not just overloading the method in the base class, but as a complement. In this case,
one usually first calls the base class, and then performs the complementary stuff. In Python, you have to know
explicitely the name of the superclass to perform this call (see for instance method__init__ ). Be aware, that
this can become rather tricky sometimes, for you have to design a real protocol describing the sequence of calls
that have to be done among classes, when not only one method is involved.

When using inheritance or composition: summary. The question of choosing between inheritance and
composition to combine objects A and B results in deciding whether Ais-aB or whether Ahas-aB. Unfortunately,
it is not always possible to decide about this, only on the basis of the nature of A and B. There a few guidelines,
though (see [Harrison97], chapter 2).

• The main advantage of inheritance over composition is that method binding, e.g lookup and actual method
call, is done automatically: you do not have to perform the method lookup and call, whereas, when combining
objects, you have to know which one has the appropriate method. For instance, aProtein instance may
have adna if created bytranslate .

• Use composition when you catch yourself making exceptions to theis-a rule and redefining several inherited
methods or willing to protect access to the base class attributes and/or methods. In such a case, the advantage
described in the previous item of having automatic attribute and method access becomes a problem.
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• Use composition when the relationships between objects are dynamic. For instance, a different way to design
sequence tools, such asclean , __str__ , etc... could be to design aSeqTools class:

class SeqTools:

def __init__(self, seqobject):
self.seqobject = seqobject

del clean(self):
seq = ""
for c in self.seqobject.seq:

if c in self.seqobject.alphabet:
seq = seq + c

self.seqobject.seq = seq

...

TheDNAor Protein instances could then have a reference to aSeqTools instance, created at instantiation:

class DNA:

def __init__(self, name=None, seq=None):
self.toolbox = build_seqtools(self)
self.name = name
self.seq = seq
self.toolbox.clean()

def build_toolbox(seqobject):
return SeqTools(seqobject)

The main advantage is flexibility: you could more easily redefine which sequence toolbox to use, provided
the public interface is the same, than with inheritance. Indeed, inheritance relationships are fixed at definition
time:

class DNA(Sequence):
...

• Use composition when a single object must have more than one part of a given type.

• Use composition to avoid deep inheritance hierarchies.

• If you can’t decide between inheritance and composition, take composition.

• Do not use inheritance when you get too many combined method calls between base class and sub-classes,
which can happen when using inheritance for extension.
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• Use inheritance when you want to build an abstract framework, which purpose is to be specialized for various
uses (see Exercise 18.2). A good example is the parsing framework in Biopython, that lets you create as many
new parsers as needed. Inheritance also provides a good mechanism to design several layers of abstraction,
that define interfaces that programmers must follow when developping their components. Bioperl modules,
although not developped in a true object-oriented language, are a good example of this.

Exercise 18.2. Example of an abstract framework: Enzyme parser

Design a parser for the Enzyme database, using Biopython parsing framework. See ??? for more details.

18.5. Flexibility

18.5.1. Summary of mechanisms for flexibility in Python

Earlier, in Section 18.2.5, we have seen that one of the powerful properties a software piece can have is to be
reusable. We also concluded that the more flexible it is, the more general and thus reusable it will be. Let us now
summarize some mechanisms in object-oriented programming that help in achieving more flexibility.

• Genericity: genericity (as available in the ADA programming language), is a technique to define parameters
for a module, exactly as you define parameters for a function, thus making the module more general. For
instance, you can define the type of an element of a Table module, or the function to move to the next item, as
being generic. There is no specific syntax in Python to define generic components, but in a way, it is not really
necessary because Python is dynamically typed, and can handle functions as parameters for other functions.

• Inheritance: as we have just seen in Section 18.4 this describes the ability, in object-oriented programming, to
derive a class from another, either to extend it or to specialize it.

• Overloading, which refers to the possibility for an operator or a method to behave differently according to
the actual data types of their operands or arguments. This feature does not directly address the problem of
flexibility: it is rather an elegant syntactic mean not to have different operators or names to perform similar
tasks on different objects or sets of objects. In this sense, it is actually a form of polymorphism. In object-
oriented programming, overloading moreover exactly means being able to redefine a method in a derived
class, thus enabling polymorphism of instances: given an instance, it is possible that you do not know exactly
to which class in a hierarchy it belongs (e.gDNAor Protein ). In other programming languages, such as
Java, there is another kind of overloading: it is possible,within the same class, to have several definitions of
the same method, but with differentsignatures, i.e a different set of parameters. This does not exist in Python,
and as described below (see Section 18.5.2), you have to handle it manually.

• Polymorphism: refers to the possibility for something to be of several forms, e.g, for an object to be of any
type. In Python, for instance, lists are polymorphic, since you can put items of any type in a list. Overloading
is one aspect of polymorphism, polymorphism of methods. Polymorphism brings a lot of flexibility, just only
because you do not have to define as many classes as potential data type for it, as you would have to do in
statically typed languages. In this sense, Python helps in designing more simple classes frameworks.
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Some of these techniques, mainly inheritance, are available in Python, other, such as genericity and overloading,
are not, or in a restricted way.

18.5.2. Manual overloading

If you want a method to behave differently according to the parameters, you must either create subclasses or write
the code to analyze the parameters yourself. In Example 18.5, there is an example a method dealing with different
types of parameters, that are manually handled.

Example 18.5. Curve class: manual overloading

def __getitem__(self, key):
"""
Extended access to the curve.
c[3]
c[’toto’]
c[’x<100’]
c[’x==y’]
"""
_x = []
_y = []
_result = None
if type(key) is ListType: ❶

_x = key
_x.sort()
_y = self.y(_x)
_result = Curve(zip(_x, _y))

elif type(key) is SliceType: ❷
_x = self._range_x(key.start, key.stop)
_y = apply(self.y, _x)
if _x and _y:

_result = Curve(zip(_x, _y))
elif self._curve.has_key(key): ❸

_result = self._curve[key]
elif type(key) is StringType: ❹

_x = self._tag_x(key)
if len(_x) > 0: ❺

_x.sort()
_y = self.y(_x)
_result = Curve(zip(_x, _y))

else: ❻
_result = self._getexpr(key)

if _result is not None:
return _result

❶ Recognizes the argument as a list.

173



Chapter 18. Object-oriented design

❷ Recognizes the argument as a slice.
❸ Recognizes the argument as an index.
❹ Recognizes the argument as a string, that is going to be further analyzed as a tag name or an expression.
❺ Recognizes the argument as a tag name.
❻ Recognizes the argument as an expression, such as ’x< y’ or ’y>10’.

Python is not able to do this analysis automatically, because it is dynamically typed. You do not have any mean
to specify thetypeof the parameter. In a language providing static typing and full method overloading, i.e also
within the same class, you could have several__getitem__ definitions that would look like:

def __getitem__(self, key: List):
...

def __getitem__(self, key: Slice):
...

def __getitem__(self, key: String):
...

As you can notice, this is of course not valid Python code, since there is no possibility to define the type of a
parameter in Python.

18.6. Object-oriented design patterns
Presenting Python classes and various related mechanisms without any description of their common uses would
be like defining thefor andwhile statements without any description of the typical uses of these constructions,
and how they adapt to various programming needs. It is the purpose of this section to present common uses
of classes and objects, the so-calleddesign patterns, that have been used for a long time by programmers since
object-oriented programming was born.

Computer science is full of design patterns, and there is no exception for object-oriented programming. A catalog
of object-oriented has been published by [Gamma95], and [Christopher2002] has a chapter dedicated to a few
of them, with examples implemented in Python. Design patterns are not programs: they are widely useddesign
choices to build programs. As such, they form a kind of conceptual catalog that you are encouraged toreuseto
build your application. Not only are they useful in order not to reinvent the wheel and to save your time, but also
because they provide acomprehension frameworkfor programmers who intend to reuse your code and who need
to understand it. This part does not aim at an exhaustive presentation of object-oriented design patterns, which are
very well described elsewhere. Its main purpose is to give a taste of it, with examples in bioinformatics, and to
introduce the main related ideas.

There are three categories of object-oriented patterns:

• Creationalpatterns: patterns that can be used tocreateobjects.

• Structuralpatterns: patterns that can be used tocombineobjects and classes in order to build structured objects.

• Behavioralpatterns: patterns that can be used to build a computation and to control data flows.
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Creational patterns. There are two main categories of creational patterns: those for creating objects without
having to know the class name, that you could call "abstract object makers" (abstract factoryandfactory method),
and those to ensure a certain property regarding object creation, such as prohibiting more than one instance for
a class (singleton), building a set of instances from different classes in a consistent way (builder), or creating an
instance with a specific state (prototype).

• Abstract factory:an abstract factory is an object maker, where, instead of specifying a class name, you specify
the kind of object you want. For instance, say that you want to create an agent to run analysis programs, you
can ask a factory to do it for you:

clustalw = AnalysisFactory.program(’clustalw’)
result = clustalw.run(seqfile = ’myseqs’)
print result.alig

Theclustalw object is an instance of, say, theAnalysisAgent.Clustalw class, but you do not have
to know about it at creation time. The only thing you know is the name of the program you want (’clustalw’),
and the factory will do the rest for you.

• Factory method:a factory method is very similar to an abstract factory: just, instead of being a class, it is a
method.

• For instance, you can create a sequence object (Bio.Seq.Seq in Biopython) by asking the
get_seq_by_num method of an alignment object (Bio.Align.Generic.Alignment ):

first_seq = align.get_seq_by_num(0)

The method which creates this instance ofBio.Seq.Seq is a factory method. The difference with a
factory class is also that the factory method is often more than an object maker: it sometimes incorporates
much more knowledge about the way to create the object than a factory would.

• A more simple factory method would be anew method defined in a class to create new instances of the
same class:

other_seq = seq.new()

In this case, notice that in order to createmy_scoring , you really do not have to know the actual class
of scoring : the only thing you know is that you will getthe same one, even if there is a whole hierarchy
of different classes of scoring.
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• Singleton:ensures that you cannot create more than one instance. For example, if you can define a class to
contain operations and data for genetic code: you need only one instance of this class to perform the task.
Actually, this pattern would not be implemented with a class in Python, but rather with a module, at least if
you can define it statically (a dynamic singleton could not be a module, for a module has to be a file):

>>> import genetic_code
>>> genetic_code.aa(’TTT’)
F

• Prototype: this pattern also lets you create a new object without knowing its class, but here, the new target
object is created with the same state as the source object:

another_seq = seq.copy()

The interest is that you do not get an "empty" object here, but an object identical toseq . You can thus play
with another_seq , change its attributes, etc... without breaking the original object.

• Builder: you sometimes need to create a complex object composed of several parts. This is the role of the
builder.

• For instance, a builder is needed to build the whole set of nodes and leafs of a tree.

• The Blast parser in Biopython simultaneously instantiates several classes that are all component parts of
of hit: Description , Alignment andHeader .

Structural patterns. Structural patterns address issues regarding how to combine and structure objects. For
this reason, several structural patterns provide alternative solutions to design problems that would else involve
inheritance relationships between classes.

• Decorator, proxy, adapter:these patterns all enable to combine two (or more) components, as shown in Figure
18.7. There is one component, A, "in front" of another one, B. A is the visible object a client will see. The role
of A is either to extend or restrict B, or help in using B. So, this pattern is similar to subclassing, except that,
where a sub-classinheritsa method from a base class, the decoratordelegatesto its decoratee when it does not
have the required method. The advantage is flexibility (see Section 18.4.2): you can combine several of these
components in any order at run time without having to create a big and complex hierarchy of subclasses.
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Figure 18.7. Delegation
A

B

Generally, the Python code of theA class looks like:

class A:
def __init__(self, b):

"""storing of the decoratee b (b is an instance of class B)"""
self.b = b

def __getattr__(self, name):
"""

methods/attributes A does not know about are delegated
to b

"""
return getattr(self.b, name)

At use time, an instance of classA is created by providing ab instance.

b = B()
a = A(b)
print a.f()

Everything that classA cannot perform is forwarded tob (providing that classB knows about it).

• Thedecoratorenables to add functionalities to another object. Example 18.6 shows a very simple decorator
that prints a sequence in uppercase.

Example 18.6. An uppercase sequence class

import string

class UpSeq:

def __init__(self, seq):
self.seq = seq

def __str__(self):
return string.upper(self.seq)

def __getattr__(self,name):
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return getattr(self.seq,name)

The way to use it is for instance:

>>> s=UpSeq(DNA(name=’name1’, seq=’atcgctgtc’))
>>> print s
ATCGCTGTC
>>> s[0:3]
’atc’
>>> len(s)
9

Exercise 18.3. An analyzed sequence class

How would you design sequence classes where all sequence analyses of typef would be available as:

seq.f()

without actually defining all the possiblef methods within the sequence class?

• Theproxyrather handles the access to an object. There are several kinds of proxy:

• protection proxy: to protect the access to an object.

Exercise 18.4. A partially editable sequence

How would you design a sequence class where the only allowed editions would be:

del seq[i]

on a gap character, and:

seq[i] = ’A’

on a ’N’ character?
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• virtual proxy: to physically fetch data only when needed. Database dictionaries in Biopython work this
way:

prosite = Bio.Prosite.ExPASyDictionary()
entry = prosite[’PS00079’]

Data are fetched only when an access to an entry is actually requested.

• remote proxy: to simulate a local access for a remotely activated procedure.

• Theadapter(or wrapper) helps in connecting two components that have been developped independantly
and that have a different interface. For instance, thePise package transforms Unix programs interfaces
in standardized interfaces, either Web interfaces, or API. For instance, thegoldenUnix command has the
following interface:

bash> golden embl:MMVASP

But thePise wrapper enables to run it and get the result by a Python program, having an interface defined
in the Python language:

factory = PiseFactory()
golden = factory.program("golden",db="embl",query="MMVASP")
job = golden.run()
print job->content()

• Composite: this pattern is often used to handle complex composite recursive structures. Example 18.7 shows
a set of classes for a tree structure, illustrated in Figure 18.8. The main idea of the composite design pattern
is to provide anuniform interfaceto instances from different classes in the same hierarchy, where instances
are all components of the same composite complex object. In Example 18.7, you have two types of nodes:
Node andLeaf , but you want a similar interface for them, that is at least defined by a common base class,
AbstractNode , with two operations:print subtree . These operations should be callable on any node
instance, without knowing its actual sub-class.

>>> t1 = Leaf( ’A’, 0.71399)
>>> t2 = Node (Leaf(’B’, -0.00804),

Leaf(’C’, 0.07470))
>>> t3 = Node ( Leaf ( ’A’, 0.71399),

Node ( Node ( Leaf(’B’, -0.00804),
Leaf(’C’, 0.07470),
0.15685),

Leaf (’D’, -0.04732),
0.0666),

)
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>>> print t3
(A: 0.71399, ((B: -0.00804, C: 0.0747): 0.15685, D: -0.04732): 0.0666)
>>> t4 = t3.right.subtree()
>>> print t4
((B: -0.00804, C: 0.0747): 0.15685, D: -0.04732)
>>> t5 = t3.left.subtree()
>>> print t5
’A’: 0.71399

Figure 18.8. A composite tree
AbstractNode
__str__
subtree

Leaf
__str__

Node

subtree
right

left

__str__
subtree

Example 18.7. A composite tree

❶
class AbstractNode:

def __str__(self):
pass

def subtree(self):
pass

❷
class Node(AbstractNode):

def __init__(self, left=None, right=None, length=None):
self.left=left
self.right=right
self.length=length

def __str__(self):
if self.length:

return "(" + self.left.__str__() + ", " + self.right.__str__() + ")" + ": " + str(self.length)

else:
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return "(" + self.left.__str__() + ", " + self.right.__str__() + ")"

def subtree(self): ❸
return Node(self.left, self.right)

class Leaf(AbstractNode):
def __init__(self, name, length=None):

self.name = name
self.length=length
self.left = None
self.right = None

def __str__(self):
return self.name + ": " + str(self.length)

def subtree(self):
return Leaf(self.name, self.length)

if __name__ == "__main__":
t1 = Leaf( ’A’, 0.71399)
print t1
t2 = Node (Leaf(’B’, -0.00804),

Leaf(’C’, 0.07470))
print t2
t3 = Node ( Leaf ( ’A’, 0.71399),

Node ( Node ( Leaf(’B’, -0.00804),
Leaf(’C’, 0.07470),
0.15685),
Leaf (’D’, -0.04732),
0.0666),

)

print t3

❶ Abstract classAbstractNode , base class for bothNode andLeaf
❷ Internal nodes are instances ofNode class.
❸ Leafs are instances ofLeaf class.

Behavioral patterns. Patterns of this category are very useful in sequence analysis, where you often have to
combine algorithms and to analyze complex data structure in a flexible way.
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• Template: this pattern consists in separating the invariant part of an algorithm from the variant part. In a sorting
procedure, you can generally separate the function which compares items from the main body of the algorithm.
The template method, in this case, is thesort() method, whereas thecompare() can be defined by each
subclass depending on its implementation or data types.

• Strategy: it is the object-oriented equivalent of passing a function as an argument. In the following example,
thef_test method is a strategy:

class MotifDB:

def __init__(self, fh=None, db=None):
self._db = []
if fh is not None:

self._load_fh(fh)
elif db is not None:

self._load_db(db)

def filter(self, f_test) :
return self.__class__(db=[motif for motif in self._db if f_test(motif)])

Applied to all elements of a set, this function is provided as a parameter to filter the elements. It can be used
the following way:

new_db = db.filter(lambda(motif): ’kinase’ in motif.get_desc())

where only elements of this motifs databse containing ’kinase’ in their description will be returned.

• Iterator: an iterator is an object that let you browse a sequence of items from the beginning to the end.
Generally, it provides:

• a method to start iteration

• a method to get the next item

• a method to test for the end of the iteration
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Usually, one distinguishesinternal versusexternaliterators. An external iterator is an iterator which enables
to do afor or awhile loop on a range of values that are returned by the iterator:

for e in l.elements():
f(e)

or:

i = l.iterator()
e = i.next()
while e:

f(e)
e = i.next()

In the above examples, you control the loop. On the other hand, an internal iterator just lets you define a
function or a method (say,f , called avisitor, see below) to apply to all elements:

l.iterate(f)

In the Biopython package, files and databases are generally available through an iterator.

handle = open(...) ❶
iter = Bio.Fasta.Iterator(handle) ❷
seq = iter.next() ❸
while seq:

print seq.name
print seq.seq ❹
seq = iter.next()

handle.close()

❶ Starting the iterator.
❷ Getting the next element.
❸ Testing for the end of the iteration.
❹ Getting the next element.
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• Visitor: this pattern is useful to specify a function that will be applied on each item of a collection. The Python
map function provides a way to use visitors, such as thef function, which visits each item of thel list in turn:

>>> def f(x):
return x + 1

>>> l=[0,1,2]
>>> map(f,l)
[1, 2, 3]

Themap is an example of an internal iterator (with thef function as a visitor). Thef_test function in the
MotifDB class above is also a visitor. A visitor is also a strategy that applies to all the elements of a set.

• ObserverTheobserverpattern provides a framework to maintain a consistent distributed state between loosely
coupled components. One agent, the observer, is in charge of maintaining a list ofsubscribers, e.g components
that have subscribed to be informed about changes in a given state. Whenever a change occurs in a state, the
observer has to inform each subscriber about it.
A well-known example is the Model-View-Controller [Krasner88] framework. The view components, the ones
who actually display data, subscribe to "edit events" in order to be able to refresh and redisplay them whenever
a change occurs.
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