July 2005

PyFITS User’s Manual

For PyFITS Version 1.0

Space Telescope Science Ingtitute
3700 San Martin Drive
Baltimore, Maryland 21218
help@stsci.edu

Copyright © Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration


mailto:help@stsci.edu

How to Get Started

If you are interested in submitting an HST proposal, then proceed as
follows:

 Vigit the Cycle 15 Announcement Web page:
http://ww. stsci.edu/ hst/ proposing

* Read the Cycle 15 Call for Proposals.

* Read thisHST Primer.

Then continue by studying more technical documentation, such as that
provided in the Instrument Handbooks, which can be accessed from:

http://ww. stsci.edu/ hst/HST_overvi ew docunent s

Where to Get Help
» Visit STScl's Web site at: http://www.stsci.edu

» Contact the STScl Help Desk. Either send e-mail to help@stsci.edu
or call 1-800-544-8125; from outside the United States and Canada,
cal [1] 410-338-1082.

The HST Primer for Cycle 15 was edited by
Diane K ar akla, Editor and Susan Rose, Technical Editor

based in part on versions from previous cycles, and with text and assistance
from many different individuals at STScl.

Send comments or corrections to:
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, Maryland 21218
E-mail:help@stsci.edu


http://www.stsci.edu/hst/HST_overview/documents
http://www.stsci.edu/
mailto:help@stsci.edu
http://www.stsci.edu/hst/proposing
mailto:help@stsci.edu

Table of Contents

Table of Contents ... i
Chapter 1.

INTrOdUCTION ..oooooee, 1

1.1 Install PYFITS .o 1

1.2 User Support for PYFITS ..., 2
Chapter 2:

A Quick Tutorial ... 3

2.1 Read and Update Existing FITS Files.........c.c.......... 3

2.1.10pen aFITSfile....ciiiiiii e, 3

2.1.2 Working with the Header .............cccceeeeiiiviiiiiiiiiiinn, 4

2.1.3 Working with Image Data...........ccccccceveeeeiiiiiiiiiiiis 5

2.1.4 Working with Table Data............ccccceeevieeviiiiiii e, 7

2.2 Create New FITS Files........cccooeoeoeieeeeeeeeee, 9

2.2.1 Save ChangesS ......cccovviiiiieeiiiiiie e 9

2.2.2 Create FITS Images from Scratch.......................... 10

2.2.3 Create FITS Tables from Scratch...................cooenne. 10

2.3 Use the Convenience Functions................ccco......... 11
Chapter 3:

FITS Headers.......coooeeeeeeceecee, 15

3.1 Headerof an HDU .........c.ooooviiiiceieceeeee e 15

3.2 The Header Attribute..........cooeeveeeeeieeeeee e 16

3.2.1 Value Access and Update ..........cccceeeveevieiiiineeeecennnnn, 16

3.2.2 COMMENT, HISTORY, and Blank Keywords .......... 17

3.3 Card IMages.......cccoveveiieieieeeeeee e, 18

3.4 Card LiSt.......coooeieeeeeeeeeeee e, 19

3.5 CONTINUE Cards........ccccoveviveeececeeeeeeeeee e, 20

3.6 HIERARCH Cards........c.ccccooviviieeeceeeeeeee e, 21



iv I Table of Contents

Chapter 4.

Image Data ... 23

4.1 Image Data as an Array.........cccceoeeveieneeieneneneenens 23

4.2 Scaled Data........ccccoveeeeeeieeeeee e 24

4.2.1 Reading Scaled Image Data..............ccoeevvveieeeennnnnnn. 24

4.2.2 Writing Scaled Image Data...............ccoevvvevevvvvnnnnnnnnn. 25

4.3 Data SECHON........cccceieeeeee e 26
Chapter 5:

Table Data..........ccoooooeoceeeceeeee 29

5.1 Table Data as a Record Array .........ccccocevevveeennnne. 30
5.1.1 What is ReCord Array............uuuueeeiiiiiiieeeeeeeeeseesenennnnns 30
5.1.2 Metadata of a Table........ccccccoeeeeiiiiiii e, 30
5.1.3Readinga FITS Table..........ccoooovriiiiiiiiii e, 31

5.2 Table Operations.............ccocovcereieieiiieieseee e, 31
5.2.1 Select Records ina Table.........ccccceevvviieeeiiiiiieeeeiiin, 31
5.2.2 Merge Tables.......ccooiiiiiiieee e 32
5.2.3 Appending Tables..........cccviiiiiiiiiiii e, 32

5.3 Scaled Datain Tables.........c.ccooviiiiiiiiiiiie, 33

5.4 Create a FITStable ..o, 34
5.4.1 Column Creation............oeeeveeeeviniiiiiiie e eeeeeeeeeeeeennenns 34

Chapter 6:

VerifiCation ... 37
6.1 FITS Standard............c..oooiieieeeeeeeeeeceeeeeeee 37
6.2 Verification OPtioNS...........ccoceveieiiiiiiceee e, 38
6.3 Verifications at Different Data Object Levels........ 39

6.3.1 Verification at HDULIS.............cciiiiiiiiiieeeeeeeeeeeeeiiiens 39

6.3.2 Varification at Each HDU .............cccccoooeiiiieineeeen, 40

6.3.3 Varification at Each Card...........ccccceevvevviiiiiii e, 40
Chapter 7:

Less Familiar Objects ... 43
T.1ASCIH TabIES ... 43

7.1.1 Create an ASCIl Table........cccooovviiiiiiiie, 44
7.2 Variable Length Array Tables...........cccccooieie. 45

7.2.1 Create Variable Length Array Table ............ccccco.. 46



Table of Contents [l v

7.3 Random ACCESS GroUP.......cccvveerrreeenieeieereeeeeenen, 47

7.3.1 Header and SUMMaAry.........ccooeeeveeiiiinieeeeeiienee e, 48

7.3.2 Data: Group Parameters.........ccoovvveviiiieiineeeiiineeeninnn, 49

7.3.3 Data: Image Data...........ccoeevviiiiiiiiiiiiiie e 50

7.3.4 Create a Random Access Group HDU ..................... 51
Chapter 8:

Reference Manual ... 53



vi ] Table of Contents



CHAPTER 1:

Introduction

In this chapter . ..

1.1 Install PyFITS / 1
1.2 User Support for PyFITS / 2

The PyFITS module is a Python library providing access to FITS files.
FITS (Flexible Image Transport System) is a portable file standard widely
used in the astronomy community to store images and tables.

1.1 Install PyFITS

PyFITS requires Python version 2.3 or newer. PyFITS also requires the
numarray module. Information about numarray can be found in:

http://ww. st sci.edu/ resources/sof t ware_har dwar e/ numar r ay
To download numarray, go to:

http://sourceforge. net/ project/nunpy

PyFITS' s source code is pure Python. It can be downloaded from:

http://ww. stsci.edu/resources/software_hardware/ pyfits/D
ownl oad

PyFITS uses python’s distutils for its instalation. To install it, unpack
the tar file and type:

pyt hon setup.py install

This will install pyfits, readgeis and fitsdiff in python’'s site-packages
directory. If permissions do not allow this kind of installation PyFITS can

1



2 |l Chapter 1: Introduction

be installed in a persona directory using one of the commands below.
Note, that PY THONPATH has to be set or modified accordingly. The three
examples below show how to install PyFITS in an arbitrary directory
<instal | -di r> and how to modify PY THONPATH.

pyt hon setup.py install --local=<install-dir>
setenv PYTHONPATH <install-dir>

pyt hon setup.py install --hone=<install-dir>
set env PYTHONPATH <instal I -dir>/1ib/python

pyt hon setup.py install --prefix=<install-Iib>
set env PYTHONPATH <instal | -dir>lib/python2. 3/site-packages

In this Guide, we'll assume that the reader has basic familiarity with
Python. Familiarity with numarray is not required, but it will help to
understand the data structures in PyFITS.

1.2 User Support for PyFITS

The official PyFITS web pageis:
http://ww. stsci.edu/resources/software_hardware/ pyfits

If you have any question or comment regarding PyFITS, user support is
available through the STScl Help Desk:

* E-mail: hel p@t sci . edu
* Phone: (410) 338-1082



CHAPTER 2:

A Quick Tutorial

In this chapter . ..

2.1 Read and Update Existing FITS Files / 3
2.2 Create New FITS Files /9

2.3 Use the Convenience Functions / 11

This chapter provides a quick introduction of using PyFITS. Thegoal is
to demonstrate PyFITS's basic features without getting into too much
detail. If you are afirst time user or an occasional PyFITS user, using only
the most basic functionality, this is where you should start. Otherwise, it is
safe to skip this chapter.

After installing numarray and PyFITS, start Python and load the PyFITS
library. Note that the module nameisal lower case.

>>> jnport pyfits

2.1

Read and Update Existing FITS Files

2.1.1 Open a FITS file
Once the PyFITS module is loaded, we can open an existing FITSfile:

>>> hdulist = pyfits.open('input.fits’)

The open() function has several optional arguments which will be
discussed in alater chapter. The default mode, as in the above example, is



4 | Chapter 2: A Quick Tutorial

2.1.2

"readonly”. The open method returns a PyFITS object called an HDULI st
which is a Python-like list, consisting of HDU objects. An HDU (Header
Data Unit) is the highest level component of the FITS file structure. So,
after the above open call, hdulist[Q] is the primary HDU, hdulist[1], if any,
isthefirst extension HDU, etc.

The HDUList has a useful method info(), which summarizes the
content of the opened FITSfile:

>>> hdulrst.1nfo()

Filenanme: testl.fits

No. Nane Type Car ds Di nensi ons For mat

0 PRI MARY Pri mar yHDU 220 () Int16

1 SCl | mageHDU 61 (800, 800) Fl oat 32
2 SCl | mageHDU 61 (800, 800) Fl oat 32
3 SCl | mageHDU 61 (800, 800) Fl oat 32
4 Scl | mageHDU 61 (800, 800) Fl oat 32

After you are done with the opened file, close it with the close()
method:

>>> hdul i st. cl ose()

The headers will still be accessable after the HDUIist is closed. The
data may or may not be accessable depending on whether the data are
touched and if they are memory-mapped, see later chapters for detail.

Working with the Header

As mentioned earlier, each element of an HDULi st IS an HDU object with
attributes of header and data, which can be used to access the header
keywords and the data.

The header attribute is a Header instance, another PyFITS object. To get
the value of a header keyword, simply do (ala Python dictionaries):

>>> hdul i st[0]. header[’targnane’]
" NGC121”

to get the value of the keyword targname, which isastring 'NGC121'.

Although keyword names are always in upper case inside the FITS file,
specifying a keyword name with PyFITS is case-insensitive, for user’s
convenience. If the specified keyword name does not exist, it will raise a
KeyEr ror exception.

We can also get the keyword value by indexing (ala Python lists):

>>> hdul i st[0]. header[27]
96




Read and Update Existing FITS Files Il 5

This example returns the 28th (like Python lists, it is O-indexed)
keyword's value, an integer, 96.

Similarly, it is easy to update a keyword's value in PyFITS, either
through keyword name or index:

>>> prihdr = hdulist[O0].header
>>> hdr[’'targnane’] = 'NGCl21-a’
>>> hdr[27] = 99

Use the above syntax if the keyword is already present in the header. If
the keyword might not exist and you want to add it if it doesn’t, use the
updat e() method:

>>> pri hdr. updat e(’ observer’, 'Edwi n Hubbl e’)

A header consists of card objects (i.e. the 80-column card-images
specified in the FITS standard). Each Card normally has up to three parts:
key, value, and comment. To see the entire list of cardimages of an HDU,
usetheascardlist() method :

>>> print prihdr.ascardlist()[:3]

SI MPLE
Bl TPI X
NAXI S

T/ file does conformto FITS standard
16 / nunmber of bits per data pixel
0 / nunber of data axes

Only thefirst three cards are shown above.
To get alist of all keywords, use the keys() method of the card list:

>>> prihdr.ascardlist().keys()
["SIMPLE', "BITPIX , "NAXIS , ...]

2.1.3

Working with Image Data

If an HDU’s dataiis an image, the dat a attribute of the HDU object will
return a numarray object. Refer to the numarray Manual for details of
manipul ating these numerical arrays.

>>> scidata = hdulist[1].data

Here, sci dat a points to the data object in the second HDU (the first
HDU, hdul i st[ 0], being the primary HDU) in hdul i st, which corresponds



6 [ Chapter 2: A Quick Tutorial

to the  sc’ extension. Alternatively, you can access the extension by its
extension name (specified in the ExTnave keyword) :

>>> scidata = hdulist[’SCl'].data

If there is more than one extension with the same EXTNAME, EXTVER'S
v vaue needs to be gspecified as the second argument, eg.
hdulist[’'sci’,2].

The returned numarray object has many attributes and methods for a
user to get information about the array, e. g.:

>>> sci dat a. shape
(800, 800)

>>> scidata.type()
Fl oat 32

Since image data is a numarray object, we can dlice it, view it, and
perform mathematical operations on it. To see the pixel value at x=5, y=2:

>>> print scidata[l, 4]

Note that, like C (and unlike FORTRAN), Python is O-indexed and the
indices have the slowest axisfirst and fast axislast, i.e. for a2-D image, the
fast axis (X-axis) which corresponds to the FITS NAXIS1 keyword, is the
second index. Similarly, the sub-section of x=11to 20 (inclusive) and y=31
to 40 (inclusive) is:

>>> sci dat a[ 30: 40, 10: 20]

To update the value of a pixel or a sub-section:

>>> sci data[ 30: 40, 10: 20] = scidata[1,4] = 999

This example changes the values of both the pixel [1,4] and the
sub-section [30:40,10:20] to the new value of 999.



2.1.4

Read and Update Existing FITS Files Il 7

Next example of array arithmetics is to convert the image data from
counts to flux:

>>> photflam = hdul i st[1]. header[’ photflani]
>>> exptinme = prihdr[’ exptine’]
>>> scidata *= photflam/ exptine

This example performs the math on the array in-place, thereby keeping
the memory usage to a minimum. (Note: before Python 2.2.3, the use of
"*=" may cause an error, thisisfixed in later Python versions.)

If a this point you want to preserve all the changes you made and write
it toanew file, you can usethewr it et o() method of HDuLi st (See below).

Working with Table Data

If you are familiar with the record array in numarray, you will find the
table data is basically a record array with some extra properties. But
familiarity with record arraysis not a prerequisite for this Guide.

Like images, the data portion of a FITS table extension is in the . dat a
attribute:

>>> hdul i st

>>> thdata = hdulist[1].data # assuming the first extension is a table

= pyfits.open(’'table.fits’)

To see the first row of the table;

>>> print tbdatalO0]
(1, "abc’, 3.7000002861022949, 0)

Each row in the table is a Record object which looks like a (Python)
tuple containing elements of heterogeneous datatypes. In thisexample: an
integer, a string, a floating point number, and a Boolean value. So the table
data are just an array of such Records. More commonly, a user is likely to
access the data in a column-wise way. This is accomplished by using the
fiel d() method. To get thefirst column (or field) of the table, use:

>>> thdata.field(0)
array([1, 2])

A numarray object with the data type of the specified field is returned.



8 | Chapter 2: A Quick Tutorial

Like header keywords, afield can be referred either by index, as above,
or by name:

>>> tbdata.field('id)
array([1, 2])

But how do we know what field names we've got? First, let’s introduce
another attribute of the table HDU: the . col ums attribute:

>>> cols = hdulist[1].colums

This attribute is a col Defs (column definitions) object. If we use its
i nfo() method:

>>> col s.info()
nane:

[cl, "c2', "¢c3, 'c4]
format:

["1J), "3A, "1F, '1L']
unit:

[,,1 ,,1 ,,1 ,,]
nul |

[-2147483647, "', "', ']
bscal e:

[,,1 ,,7 31 ,,]
bzero:

["", "', 0.40000000000000002, ']
di sp:

['111, "A3, "'GI5.7", 'L6"]
start:

[,,1 ,,1 ,,1 ,,]
dim

[,,1 ,,1 ,,1 ,,]

it will show all its attributes, such as names, formats, bscales, bzeros,
etc. We can also get these propertiesindividually, e.g.:

>>> col s. nanes
['ID, "nane’, 'mag', 'flag']

returns a (Python) list of field names.
Since each field is a numarray object, we'll have the entire arsenal of
numarray tools to use. We can reassign (update) the values:

>>> thdata.field(’flag )[:] = O




Create New FITS Files |l 9

Theinfo() method of table data will show the attributes of the record
array, many of them may seem esoteric to casual users:

>>> thdata.info()

class: <class 'pyfits.FITS rec’ >

shape: (2,)

strides: (12,)

byteoffset: 0

bytestride: 12

itensize: 12

aligned: 0

contiguous: 1

buf fer: <nmenory at 0x092dc3d8 with size: 0x00000018 hel d by
obj ect 0x4086eb20 al i asi ng obj ect 0x00000000>

data pointer: 0x092dc3d8 (DEBUG ONLY)

field names: ['cl, '¢c2', 'c3, 'c4']

field formats: [’1Int32', "1la3', '1Float32’', '1Int8']

2.2 Create New FITS Files

2.2.1 Save Changes

As mentioned earlier, after a user opened a file, made a few changes to
either header or data, the user can use the w i tet o() method in HDULi st tO
save the changes. Thistakes the version of headers and datain memory and
writes them to a new FITS file on disk. Subsequent operations can be
performed to the data in memory and written out to yet another different
file, all without recopying the original datato (more) memory.

>>> hdulist.witeto(’' newinage.fits’)

will write the current content of hdul i st toanew disk filenewfile.fits.
If afile was opened with the updat e mode, the f 1 ush() method can also be
used to write all the changes made since open(), back to the origina file.
The cl ose() method will do the same for a FITS file opened with updat e
mode.

>>> f = pyfits.open(’original.fits', node= update’)
# maki ng changes in data and/or header

>>> f.flush() # changes are written back to original.fits




10 [ Chapter 2: A Quick Tutorial

2.2.2 Create FITS Images from Scratch

2.2.3

So far we have demonstrated how to read and update an existing FITS
file. But how about creating a new FITS file from scratch? Such task is
very easy in PyFITS for an image HDU. We'll first demonstrate how to
create aFITSfile consisting only the primary HDU with image data.

First, we create a numarray object for the data part:

>>> jnport numarray
>>> n = numarray. arange(100) # a sinple sequence fromO to 99

Next, we create a pri mar yHDU 0bject to encapsul ate the data:

>>> hdu = pyfits. PrimaryHDU(n)

we then create a HbuLi st to contain the newly created primary HDU,
and write to anew file:

>>> hdul i st = pyfits. HDULi st ([ hdu])
>>> hdulist.witeto('new. fits’)

That'sit! Infact, PyFITS even provides a short cut for the last two lines:

>>> hdu.witeto(' new fits’)

accomplishes the same!

Create FITS Tables from Scratch

To create a table HDU is a little more involved than image HDU,
because table’s structure needs more information. First of al, tables can
only be an extension HDU, not a primary. There are two kinds of FITS
table extensions: ASCII and binary. We'll use binary table examples here.

To create a table from scratch, we need to define columns first, by
constructing the col urm objects and their data. Say, we have two columns,
the first contains strings, and the second contains floating point numbers

>>>
>>>
>>>
>>>

al=numarray.strings.array([’ NGCL001', ' NGC1002’, ’'NGC1003'])
a2=numarray.array([11.1,12. 3,15.2])

col 1=pyfits. Col uim(name="target’, format="20A", array=al)
col 2=pyfits. Col um(nanme="V_mag’', format="FE , array=a2)




Use the Convenience Functions [l 11

Second, create a col Def s (column-definitions) object for al columns:

>>> col s=pyfits. Col Defs([col 1, col2])

Now, create a new binary table HDU object by using the PyFITS
function new t abl e() :

>>> t bhdu=pyfits. new tabl e(cols)

This function returns (in this case) a Bi nTabl eHDU. Append it to the
hdul i st we already have:

>>> hdul i st. append(t bhdu)

or create anew HbuLi st and go through the same steps as you did for the
I mgeHDU. If this will be the only extension of the new FITS file and you
only have aminimal primary HDU with no data, PyFITS again provides a
short cut:

tbhdu.writeto('table.fits’)

So far, we have covered the most basic features of PyFITS. In the
following chapters we'll show more advanced examples and explain
options in each class and method.

2.3 Use the Convenience Functions

PyFITS aso provides several high level ("convenience") functions.
Such a convenience function is a "canned" operation to achieve one simple
task. By using these "convenience" functions, a user does not have to
worry about opening or closing a file, al the housekeeping is done
implicitly.

Thefirst of these functionsis get header () , to get the header of an HDU.
Here are several examples of getting the header. Only the file name is



12 | Chapter 2: A Quick Tutorial

required for this function. The rest of the arguments are optional and
flexible to specifiy which HDU the user wants to get:

>SS getheader (Cin.fits ) # get default ADU (=0), 1.e. prinary ADU s header
>>> getheader("in.fits’, 0) # get primary HDU s header
>>> getheader("in.fits', 2) # the second extension

# the HDU with EXTNAME="sci’ (if there is only 1)
>>> getheader(’in.fits', ’sci’)

# the HDU with EXTNAME=" sci’ and EXTVER=2

>>> get header("in.fits’, "sci’, 2)
>>> getheader("in.fits’, ("sci’, 2)) # use a tuple to do the sane
>>> getheader("in.fits', ext=2) # the second extension

# the "sci’ extension, if there is only 1
>>> getheader("in.fits’, extnane='sci’)

# the HDU with EXTNAME=" sci’ and EXTVER=2
>>> getheader("in.fits’, extnane=sci’, extver=2)

# anbi guous specifications will raise an exception, DON'T DO IT!
>>> getheader("in.fits’, ext=("sci’, 1), extname="err’, extver=2)

After you get the header, you can access the information in it, such as
getting and modifying a keyword value:

>>> from pyfits inport getheader

>>> hdr = getheader(’'in.fits’, 1) # get first extension’s header
>>> filter = hdr['filter’] # get the value of the keyword "filter’
>>> val = hdr[10] # get the 11th keyword' s val ue

>>> hdr['filter’] =" FW55 # change the keyword val ue

For the header keywords, the header islike adictionary, aswell asalist.
The user can access the keywords either by name or by numeric index, as
explained earlier in this chapter.

If a user only needs to read one keyword, the getval () function can
further simplify to just one call, instead of two as shown in the above
examples:

>>> frompyfits inport getva

>>> flt = getval ("in.fits’, "filter’, 1) # get 1lst extension’s keyword
# FILTER s val ue
>>> val = getval ("in.fits’, 10, 'sci’, 2) # get the 2nd sci extension's

# 11th keyword’'s val ue

The function getdata() gets the data of an HDU. Similar to
get header (), it only requires the input FITS file name while the extension



Use the Convenience Functions [l 13

is specified through the optional arguments. It does have one extra optional
arguemnt header. If header isset to True, thisfunction will return both data

and header, otherwise only datais returned.

>>> frompyfits inport getdata
>>> dat = getdata(’'in.fits, "sci’, 3) # get 3rd

# get 1st extension’s data and header
>>> data, hdr = getdata(’'in.fits’, 1, header=True)

sci extension’ s data

The functions introduced above are for reading. The next few functions

demonstrate convenience functions for writing:

>>> pyfits.witeto('out.fits', data,

header)

Thewiteto() function usesthe provided data and an optional header to

write to an output FITSfile.

>>> pyfits.append(’ out.fits’, data,

header)

The append() function will use the provided data and the optional
header to append to an existing FITS file. If the specified output file does

not exi<t, it will create one.

>>> frompyfits inport update

>>> update(file, dat, hdr, 'sci’') # update the 'sci’' extension
>>> update(file, dat, 3) # update the 3rd extension

>>> update(file, dat, hdr, 3) # update the 3rd extension

>>> update(file, dat, 'sci’', 2) # update the 2nd SCl extension

>>> update(file, dat, 3, header=hdr) # update the
>>> update(file, dat, header=hdr, ext=5) # update

3rd extension
the 5th extension

The update() function will update the specified extension with the input
data’lheader. The 3rd argument can be the header associated with the data.
If the 3rd argument is not a header, it (and other positional arguments) are
assumed to be the extension specification(s). Header and extension specs

can also be keyword arguments.

Finally, the i nfo() function will print out information of the specified

FITSfile



14 | Chapter 2: A Quick Tutorial

>>> pyfits.info('test0.fits’)
Filenane: testO.fits

No. Nane Type Car ds Di nensi ons For mat
0 PRI MARY Pri mar yHDU 138 () Int16
1 Scl | mageHDU 61 (400, 400) Int16
2 Scl | mageHDU 61 (400, 400) Int16
3 Scl | mageHDU 61 (400, 400) I nt 16
4 Scl | mageHDU 61 (400, 400) Int16




CHAPTER 2:

FITS Headers

In this chapter . ..

2.1 Header of an HDU / 3

2.2 The Header Attribute / 4
2.3 Card Images / 6

2.4 Card List/ 7
2.5 CONTINUE Cards / 8
2.6 HIERARCH Cards / 9

In the next three chapters, more detailed information as well as
examples will be explained for manipulating the header, the image data,
and the table data respectively.

2.1 Header of an HDU

Every HDU normally has two components. header and data. In PyFITS
these two components are accessed through the two attributes of the HDU,
.header and. dat a.

While an HDU may have empty data, i.e. the . dat a attribute is None,
any HDU will always have a header. When an HDU is created with a
constructor, e.g. hdu=pri mar yHDU(dat a, header), the user may supply the
header value from an existing HDU’s header and the data value from a



4 | Chapter 2: FITS Headers

numarray. |If the defaults (None) are used, the new HDU will have the
minimal require keyword:

>>> hdu = pyfits. PrimaryHDU()
>>> print hdu. header. ascardli st () # show t he keywords

SIMPLE = T/ confornms to FITS standard
BITPI X = 8 /| array data type

NAXIS = 0 / nunber of array dinensions
EXTEND = T

A user can use any header and any data to construct a new HDU.
PyFITS will strip the required keywords from the input header first and
then add back the required keywords compatible to the new HDU. So, a
user can use a table HDU's header to construct an image HDU and vice
versa. The constructor will also ensure the data type and dimension
information in the header agree with the data.

2.2 The Header Attribute

2.2.1 Value Access and Update

As shown in the Quick Tutorial, keyword values can be accessed via
keyword name or index of an HDU’s header attribute. Here is a quick

summary:
>>> hdulist = pyfits.open('input.fits') # open a FITS file
>>> prihdr = hdulist[0].header # the primary HDU header
>>> print prihdr[3] # get the 4th keyword' s val ue
10
>>> prihdr[3] = 20 # change it’s val ue
>>> print prihdr[’darkcorr’] # get the val ue of the keyword ' darkcorr’
1 O\A T!
>>> prihdr[’ darkcorr’] =" PERFORM # change darkcorr’s val ue

When reference by the keyword name, it is case insensitive. Thus,
prihdr["abc’],prihdr[’ ABC ], Or prihdr[’aBc’'] areall equivalent.

a keyword (and its corresponding Card) can be deleted using the same
index/name syntax:

>>> del prihdr[3] # delete the 2nd keyword
>>> del prihdr[’abc’] # get the value of the keyword 'abc




The Header Attribute Il 5

Note that, like a regular Python list, the indexing updates after each
delete, so if del prihdr[3] is done two times in a row, the 2nd and 3rd
keywords are removed from the original header.

Slices are not accepted by the header attribute, so it is not possible to do
del prihdr[3:5],for example.

The method updat e(key, value, comment) IS a more versatile way to
update keywords. It hastheflexibility to update an existing keyword and in
case the keyword does not exist, add it to the header. It also alows the use
to update both the value and its comment. If it is anew keyword, the user
can also specify where to put it, using the before or after optional
argument. The default isto append at the end of the header.

>>> prihdr.update(’'target’, 'NGC1234', 'target name’)

>>> # place the next new keyword before the "target’ keyword

>>> pri hdr. updat e(’ newkey’, 666, before="target’) # comment is optional
>>> # place the next new keyword after the 21st keyword

>>> pri hdr. updat e(’ newkey2', 42.0, 'another new key', after=20)

2.2.2 COMMENT, HISTORY, and Blank Keywords

Most keywords in a FITS header have unique names. If there are more
than two cards sharing the same name, it is the first one accessed when
referred by name. The duplicates can only be accessed by numeric
indexing.

There are three special keywords (their associated cards are sometimes
referred to as commentary cards), which commonly appear in FITS
headers more than once. They are (1) blank keyword, (2) HISTORY, and
(3) COMMENT. Again, to get their values (except for the first one), a user
must use indexing.

The following header methods are provided in PyFITS to add new
commentary cards. add_hi st ory(), add_comrent (), and add_bl ank(). They
are provided because the updat e() method will not work - it will replace
the first card of the same keyword.

Users can control where in the header to add the new commentary
card(s) by using the optional before and after arguments, similar to the
updat e() method used for regular cards. If no before Or after IS Specified,
the new card will be placed after the last one of the same kind (except



6 [ Chapter 2: FITS Headers

blank-key cards which will always be placed at the end). If no card of the
same kind exists, it will be placed at the end. Hereisan example:

>>> hdu. header.add_history(’ history 1')
>>> hdu. header. add_bl ank(’ bl ank 1")
>>> hdu. header.add_coment (' conment 1)
>>> hdu. header.add_history(’ history 2')
>>> hdu. header. add_bl ank(’ bl ank 2")
>>> hdu. header . add_coment (’ conment 2’ ))

and the part in the modified header becomes:

HI STORY history 1
Hl STORY history 2
bl ank 1
COMMENT comment 1
COMMVENT comment 2
bl ank 2

[ronically, there is no comment in a commentary card , only a string
value.

2.3 Card Images

A FITS header consists of card images.

A card images in a FITS header consists of a keyword name, a value,
and optionally a comment. Physically, it takes 80 columns (bytes) - without
carriagereturn - in aFITSfile's storage form. In PyFITS, each card image
is manifested by a card object. There are also special kinds of cards:
commentary cards (see above) and card images taking more than one
80-column card image. The latter will be discussed in 3.4 below.



Card List Il 7

Most of the time, anew car d object is created with the car d constructor:

Card(key, value, coment). For example:

"mrror reversed? Bool ean val ue)

>>> cl = pyfits.Card('tenp’, 80.0, 'tenperature, floating
>>> c2 = pyfits.Card(  detector’, 1) # coment is optiona
>>> ¢3 = pyfits.Card('mr_revr’, True,

>>> c4 = pyfits.Card(’ abc’, 2+3j, 'conplex value’)

>>> ¢c5 = pyfits. Card(’ observer’, 'Hubble', ’string value’)
>>> print cl; print ¢c2; print ¢c3; print c4; print c5 # showthe card i nages
TEMP = 80.0 / tenperature, floating val
DETECTOR= 1/

M R_REVR= T/ mrror reversed? Bool ean
ABC = (2.0, 3.0) / conplex value

OBSERVER= ' Hubbl e / string val ue

val ue’)

ue

val ue

Cards have the attributes .key, .val ue, and .comment
. comret can be changed but not the . key attribute.

The card()
conforming to the FITS starndard and has afixed card

. Both . val ue and

constructor will check if the arguments given are

image format. If the

user wants to create a card with a customized format or even a card which
is not conforming to the FITS standard (e.g. for testing purposes), the card

method f ronst ri ng() can be used.

Cards can be verified by the veri fy() method. The non-standard card

c2 in the example below, is flagged by such verification. More about
verification in PyFITS will be discussed in Chapter 6.

>>> ¢l = pyfits.Card().fronstring(’ ABC = 3.456D023")
>>> c2 = pyfits.Card().fronmstring("P.I. =' Hubbl e’ ")

>>> print cl; print c2

ABC = 3. 456D023

P. 1. =’ Hubbl e’

>>> c2.verify()
Qut put verification result:
Unfixable error: Illegal keyword nane "P.I.’

2.4 Card List

The Header itself only has limited functionalities.

Many lowere level

operations can only be achieved by going through its car dLi st object.
The header is basically alist of Cards. Thislist can be manifested as a

CardLi st object in PyFITS. It isaccessed viathe asca

rdlist() method (or

the . ascard attribute, for short) of Header. Since the header attribute only
refers to a card value, so when a user needs to access a card’s other
properties (e.g. the comment) in aheader, it hasto go through the CardList.



8 | Chapter 2: FITS Headers

Like the header’s item, the CardList’s item can be accessed through either
the keyword name or index.

>>> cards = prihdr. header. ascardli st ()

>>> cards[’ abc’].coment = new coment’ # update the keyword ABC s coment
>>> cards[ 3] . key # see the keyword name of the 4th card
>>> cards[ 10: 20] . keys() # see keyword nanes fromcards 11 to 20

2.5 CONTINUE Cards

The fact that the FITS standard only allows up to 8 characters for the
keyword name and 80 characters to contain the keyword, the value, and the
comment is restrictive for certain applications. To allow long string values
for keywords, a proposal was made in:

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/ofwg_recomm/r13.
html

by using the CONTINUE keyword after the regular 80-column
containing the keyword. PyFITS does support this convention, even
though it is not a FITS standard. The examples below show the use of
CONTINUE is automatic for long string values.

>>> c=pyfits. Card(’ abc’,’ abcdef g’ *20)

>>> print ¢

ABC = ' abcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcd&
CONTI NUE ' ef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef ga&
CONTI NUE ' bcdef g&

>>> c.val ue

" abcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gab
cdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef g’

# both val ue and conments are |ong

>>> c=pyfits. Card(’ abc’,’ abcdefg’ *10,’ abcdefg’ *10)

>>> print ¢

ABC = ' abcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcd&
CONTI NUE ' ef g&

CONTINUE ' & |/ abcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef gabcdef ga
CONTINUE '& [/ bcdefg

Note that when CONTINUE card is used, at the end of each
80-characters card image, an ampersand is present. The ampersand is not
part of the string value. Also, there is no "=" at the 9th column after
CONTINUE. Inthefirst example, the entire 240 charactersis considered a



HIERARCH Cards I 9

Card. So, if itisthe nth card in a header, the (n+1)th card refers to the next
keyword, not the 80-characters containing CONTINUE. These keywords
having long string values can be accessed and updated just like regular
keywords.

2.6 HIERARCH Cards

For keywords longer than 8 characters, there is a convention originated
at ESO to facilitate such use. It uses a specia keyword HIERARCH with
the actual long keyword following. PyFITS supports this convention as
well.

When creating or updating using the header.update() method, it is

>>> ¢ = pyfits. Card(’ abcdefghi’, 10)

Val ueError: keyword name abcdefghi is too long (> 8), use H ERARCH
>>> c=pyfits. Card(’ hierarch abcdefghi’, 10)

>>> print c

HI ERARCH abcdef ghi = 10

>>> h=pyfits.PrimryHDU()
>>> h. header . updat e(’ hi erarch abcdefghi’, 99)

necessary to prepend "hierarch’ (case insensitive). But if the keyword is
aready in the header, it can be accessed or updated by assignment by using
the keyword name diretly, with or without the "hierarch’ prepending. The

>>> h. header. updat e(’ hi erarch abcdefghi’, 99)
>>> h. header [’ abcdef ghi’]

99

>>> h. header [’ abcdef ghi’]=10

>>> h. header [’ hi erarch abcdef ghi ]

10

# case insensitive
--> h. header. updat e(’ hi erarch ABCdef ghi’, 1000)
--> print h. header

SI MPLE = T/ conforns to FITS standard
BITPI X = 8 / array data type

NAXIS = 0 / nunmber of array dinmensions
EXTEND = T

HI ERARCH ABCdef ghi = 1000
--> h. header [’ hierarch abcdefghi ]
1000




10 [ Chapter 2: FITS Headers

keyword name will preserve its cases from its constructor, but when refer
to the keyword, it is case insensitive.



CHAPTER 3:

Image Data

In this chapter . ..

3.1 Image Data as an Array / 11
3.2 Scaled Data / 12
3.3 Data Section / 14

In this chapter, we'll discuss the data component in an image HDU.

3.1 Image Data as an Array

A FITS primary HDU or an image extension HDU may contain image
data. The following discussions apply to both of these HDU classes. In
PyFITS, for most cases, it is just a smple numarray, having the shape
specified by the NAXIS keywords and the data type specified by the
BITPIX keyword - unless the data is scaled, see next section. Hereis a
quick cross reference between allowed BITPIX valuesin FITS images and

the numarray data types..
Bl TPI X numarray data type
8 unt8 (note it is UNsigned integer)
16 Int16
32 I nt 32
-32 Fl oat 32
- 64 Fl oat 64

11



12 | Chapter 3: Image Data

To recap the fact that in numarray the arrays are O-indexed and the axes
are ordered from slow to fast. So, if a FITS image has NAXIS1=300 and
NAX1S2=400, the numarray of its datawill have the shape of (400, 300).

Hereisasummary of reading and updating image data values:

>>> f = pyfits.open(’image.fits') # open a FITS file

>>> scidata = f[1].data # assune the first extension is an inage
>>> print scidatall, 4] get the pixel value at x=5, y=2

>>> sci dat a] 30: 40, 10: 20] get values of the subsection

fromx=11 to 20, y=31 to 40 (inclusive)
update a pi xel val ue

updat e val ues of a subsection

copy the 3rd rowto the 4th row

>>> gcidata[l,4] = 999
>>> scidata[30:40, 10:20] =0
>>> gcidata[3] = scidatal 2]

#
#
#
#
#
#

Here are some more complicated examples by using the concept of the
"mask array". The first example is to change all negative pixel values in
sci dat a t0 zero. The second one is to take logarithm of the pixel values
which are positive:

0
numarray. | og(sci dat a[ sci dat a>0])

>>> gci dat a[ sci dat a<0]
>>> gci dat a[ sci dat a>0]

These examples show the concise nature of numarray operations.

3.2 Scaled Data

Sometimes an image is scaled, i.e. the data stored in the file is not the
image’s physical (true) values, but linearly transformed according to the
eguation:

physi cal val ue = BSCALE*(storage val ue) + BZERO

BSCALE and BZERO are stored as keywords of the same names in the
header of the same HDU. The most common use of scaled image is to
store unsigned 16-bit integer data because FITS standard does not allow it.
In this case, the stored data is signed 16-bit integer (BITPIX=16) with
BZERO=32768 (2**15), BSCALE=1.

3.2.1 Reading Scaled Image Data

Images are scaled only when either of the BSCALE/BZERO keywords
are present in the header and either of their values is not the default value
(BSCALE=1, BZERO=0).



Scaled Data Il 13

For unscaled data, the data attribute of an HDU in PyFITS isanumarray
of the same data type as specified by the BITPIX keyword. For scaled
image, the . dat a attribute will be the physical data, i.e. aready transformed
from the storage data and may not be the same data type as prescribed in
BITPIX. This means an extra step of copying is needed and thus the
corresponding memory requirement. This also means that the advantage of
memory mapping is reduced for scaled data.

For floating point storage data, the scaled data will have the same data
type. For integer data type, the scaled data will always be single precision
floating point (Float32). Hereisan example of what happensto such afile,
before and after the data is touched:

>>> f=pyfits.open(’ scaled uintl6.fits")

>>> hdu = f[1]

>>> print hdu. header[’ bitpix'], hdu. header[’ bzero’]

16 32768

>>> print hdu.data # once data is touched, it is scaled
[ 11. 12. 13. 14. 15.]

>>> hdu. data. type()

Fl oat 32

>>> print hdu. header[ ' bitpix'] # BITPIX is al so updated
-32

# BZERO and BSCALE are renoved after the scaling

>>> print hdu. header[’ bzero’]

KeyError: "Keyword 'bzero’ not found."

3.2.2 Writing Scaled Image Data

With the extra processing and memory requirement, we discourage
users to use scaled data as much as possible. However, PyFITS does
provide ways to write scaled data with the scal e(type, option, bscale,
bzero) method. Here are afew examples:

# scale the data to Intl16 with user specified bscal e/bzero
>>> hdu.scale(’Int1l6’, '’ , bzero=32768)

# scale the datato Int32 with the m n/max of the data range
>>> hdu.scale(’ Int32’, 'mnmax’)

# scal e the data, using the original BSCALE/ BZERO
>>> hdu.scale(’Int32', 'old")

The first example above shows how to store an unsigned short integer
array.

Great caution must be exercised when using the scal e() method. The
. dat a attribute of an image HDU, after the scal e() cal, will become the
storage values, not the physical values. So, only call scal e() just before



14 | Chapter 3: Image Data

writing out to FITSfiles, i.e. calsof witeto(), flush(), or close(). NO
further use of the data should be exercised. Here is an example of what
happens to the .dat a attribute after the scal e() call:

>>> hdu=pyfits.PrimaryHDU(numarray.array([0.,1,2,3]))
>>> print hdu. data

[ 0. 1. 2. 3.]

>>> hdu.scale(’Int16’, '’, bzero=32768)

>>> print hdu.data # now the data has storage val ues
[-32768 -32767 -32766 -32765]

>>> hdu.witeto(’ new. fits’)

3.3 Data Section

When a FITS image HDU’s . dat a IS accessed, either the whole data is
copied into memory (in cases of NOT using memory mapping or if the data
isscaled) or avirtual memory space equivalent to the datasize is allocated
(in the case of memory mapping of non-scaled data). If there are several
very large image HDU's being accessed at the same time, the system may
run out of memory.

If a user does not need the entire image(s) at the same time, e.g.
processing images(s) ten rows at atime, the secti on() method can be used
to alleviate such memory problem.

Here is an example of getting the median image from 3 input images of
the size 5000x5000:

>>> fl=pyfits.open('filel.fits")
>>> f2=pyfits.open('file2.fits")
>>> f3=pyfits.open('file3.fits")
>>> out put = numarray. zer os(5000*5000)

>>> for i in range(50):
j=i*100
k=j +100

x1=f[1].section[j:k,:]

x2=f[2].section[j:k,:]

x3=f[3].section[j:k,:]

# use numarray.inmage’ s nmedi an function
output[j:k] = numarray.imge. medi an([x1, x2, x3])




Data Section [l 15

Datain each .secti on must be contiguous. Therefore, if f[1].dataisa
400x400 image, the first part of the following specifications will not work,
while the second part will:

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

# These will NOT work, since the data are not contiguous!
f[1].section[:5,:5]

f[1].section[:,:3]

f[1].section[:, 2]

# but these will work:
f[1].section[5,:]
f[1].section[5,:10]
f[1].section][6,7]

At present, the sect i on() method does not support scaled data.



16 | Chapter 3: Image Data



CHAPTER 4:

Table Data

In this chapter . ..

4.1 Table Data as a Record Array / 18
4.2 Table Operations / 19

4.3 Scaled Data in Tables / 21

4.4 Create a FITS table / 22

In this chapter, we'll discuss the data component in a table HDU. A
table will always be in an extension HDU, never in a primary HDU.

There are two kinds of table in FITS standard: binary table and ASCI|
table. Binary table is more economical in storage and faster in data access
and manipulation. ASCII table stores the data in a "human readable" form
and therefore takes up more storage space as well as more processing time
since the ASCII text need to be parsed back into numerical values.

17



18 | Chapter 4: Table Data

4.1 Table Data as a Record Array

4.1.1

4.1.2

What is Record Array

A record array is an array which contains records (i.e. rows) of
heterogeneous data types. Record array is available through the records
module in the nunarray library. Hereisasimple example of record array:

>>> jnport numarray.records as rec

>>> pright=rec.array([(1,  Sirius’, -1.45, "A1V'),\

(2, Canopus’, -0.73, "FOIb"),\
(3,"Rigil Kent’, -0.1, "&V)],\
formats="1nt 16, a20, Fl oat 32, a10’ , \

nanmes=' or der, nane, mag, Sp’ )

In this example, there are 3 records (rows) and 4 fields (columns). The
first field is a short integer, second a character string (of length 20), third a
floating point number, and fourth a character string (of length 10). Each
record has the same (heterogeneous) data structure.

Metadata of a Table

The datain a FITS table HDU is basicaly a record array, with added
attributes. The metadata, i.e. information about the table data, are stored in
the header. For example, the keyword TFORM 1 contains the format of the
first field, TTYPE2 the name of the second field, etc. NAXIS2 gives the
number of records(rows) and TFIELDS gives the number of fields
(columns). For FITS tables, the maximum number of fieldsis 999. The
data type specified in TFORM is represented by letter code for binary
tables and a FORTRAN-like format string for ASCI| tables. Note that this
isdifferent from the format specifications when constructing arecord array.



Table Operations [l 19

4.1.3 Reading a FITS Table

Like images, the . dat a attribute of atable HDU contains the data of the
table. To recap the simple example in Chapter 1.

>>> f = pyfits.open(’ bright_stars.fits’) # open a FITS file

>>> tbdata = f[1].data # assune the first extension is a table
>>> print tbdatal: 2] # show the first two rows
RecArray[

(1, "Sirius’, -1.4500000476837158, 'Al1V),
(2, ’Canopus’, -0.73000001907348633, ’'FOIb’)

]

--> print tbhdata.field(’ mag’) # show the values in field "mag"
[-1.45000005 -0.73000002 -0.1 ]
--> print tbdata.field(1l) # field can be referred by index too

["Sirius’ "Canopus’ 'Rigil Kent’]

>>> scidata[l,4] = 999 # update a pi xel val ue
>>> scidata[ 30: 40, 10:20] = 0 # update val ues of a subsection
>>> scidata[ 3] = scidatal?2] # copy the 3rd rowto the 4th row

Note that in PyFITS, when using the fi el d() method, it is O-indexed
while the suffixes in header keywords, such as TFORM is 1-indexed. S0,
tbdata.fiel d(0) IS the data in the column with the name specified in
TTYPEL and format in TFORM 1.

4.2 Table Operations

4.2.1 Select Records in a Table

Like image data, we can use the same "mask array" idea to pick out
desired records from a table and make a new table out of it

In the next example, assuming the table’'s second field having the name
"magnitude’, an output table containing all the records of magnitude > 5
from the input tableis generated: . [worksonly on version 0.9.8.4 an later]

>>>t = pyfits.open(’'table.fits’)

>>> tbhdata = t[1].data

>>> mask = tbdata.fiel d(’ magnitude’) > 5
>>> newt bdata = t bdat a[ mask]

>>> hdu = Bi nTabl eHDU( newt bdat a)

>>> hdu.witeto(’ newable.fits")




20 [ Chapter 4: Table Data

4.2.2 Merge Tables

Merging different tables is straightforward in PyFITS,. Simply merge
the column definitions of the input tables.

>>> t 1
>>> 12

= pyfits.open('tablel.fits")

= pyfits.open('table2.fits")

# the colum attribute is the colum definitions
>>>t = t1[1].colums + t2[1].col ums

>>> hdu = pyfits. new table(t)

>>> hdu.witeto(’ newable.fits")

The number of fields in the output table will be the sum of numbers of
fields of the input tables. Users have to make sure the input tables don't
share any common field names. The number of records in the output table
will be the largest number of records of al input tables. The expanded
dotsfor the originally shorter table(s) will be zero (or blank) filled.

4.2.3 Appending Tables

Appending one table after another is dlightly trickier, since the two
tables may have different field attributes. Here are two examples. Thefirst
isto append by field indices, the second one isto append by field names. In
both cases, the output table will inherit column attributes (name, format,
etc.) of thefirst table.



Scaled Data in Tables Il 21

>>> t1
>>> t2

pyfits.open(’'tablel.fits’)
pyfits.open(’'table2.fits’)

# one way to find the nunber of records
>>> nrowsl = t1[1]. data. shape[ 0]

# another way to find the nunber of records
>>> nrows2 = t2[1]. header[’ naxis2’']

# total nunber of rows in the table to be generated
>>> nrows = nrowsl + nrows2

>>> hdu = pyfits.new table(t1[1].colums, nrows=nrows)

# first case, append by the order of fields
>>> for i in range(len(tl[1].colums)):
hdu. data.field(i)[nrowsl:]=t2[1].data.field(i)

# or, second case, append by the field nanes
>>> for nane in t1[1].col ums. nanes:
hdu. data. fiel d(name)[ nrowsl:]=t2[1].data.fiel d(nane)

# wite the newtable to a FITS file
>>> hdu.witeto(’ newtable.fits")

4.3

Scaled Datain Tables

Tablefield' s data, like an image, can also be scaled. The scaling in table
has a more generalized meaning than in images. In images, the physical
data is a simple linear transformation from the storage data. The table
fields do have such construct too, where BSCALE and BZERO are stored
in the header as TSCALnN and TZERON. In addition, Boolean columns and
ASCII tables's numeric fields are aso generalized "scaled" fields, but
without TSCAL and TZERO.

All scaled fields, like the image case, will take extra memory space as
well as processing. So, if high performance is desired, try to minimize the
use of scaled fields.

All the scalings are done for the user, so the user only sees the physica
data. Thus, thisno need to worry about scaling back and forth between the
physical and storage column values.



22 W Chapter 4: Table Data

4.4 Create a FITS table

4.4.1 Column Creation

To create a table from scratch, it is necessary to create individual
columns first. A col urm constrctor needs the minimal infomation of
column name and format. Here is a summary of al allowed formats for a

binary table:

FITS format code Description 8-bit bytes

L | ogi cal (Bool ean) 1

X bi t *

B Unsi gned byte 1

I 16-bit integer 2

J 32-bit integer 4

K 64-bit integer 4

A charact er 1

E single precision floating point 4

D doubl e precision floating point 8

C singl e precision conpl ex 8

M doubl e precision conpl ex 16

P array descriptor 8

WE'll concentrate on binary tables in this chapetr. ASCII tables will
descussed in alater chapter. The less frequently used X format (bit array)
and P format (used in variable length tables) will also be discussed in a
later chapter.
Besides the required name and format arguments in constructing a

Column, there are many optional arguments which can be used in creating
acolumn. Hereisalist of these arguments and their corresponding header
keywords and descriptions

ar gunent Cor r espondi ng Descri ption

in Columm() header keyword

nane TTYPE col utm nane

f or mat TFORM colum for mat

uni t TUNIT uni t

nul | TNULL null value (only for B, I, and J)

bscal e TSCAL scaling factor for data

bzero TZERO zero point for data scaling

di sp TDI SP di spl ay format

dim TDI M mul ti -di mensi onal array spec

start TBCOL starting position for ASCI| table

array the data of the colum




Create a FITS table [l 23
Note: the current version of PyFITS does not support dim yet.

Here are afew Columns using various combination of these arguments:

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

i mport numarray as num

frompyfits inport Colum

counts = numarray([312, 334, 308, 317])

nanes=num strings.array([’ NGCL’, *NGC2', 'NGC3', 'NGZ4'])

cl = Colum(nane="target’, format="10A", array=nanes)
c2 = Col um(name="counts’, format="J", unit="DN, array=counts)

c3 = Colum(nane="notes’, format="A10")
c4 = Col um(nane="spectruni, formt="1000F )
c5 = Colum(nane="flag’, format="L',array=[1,0,1,1])

In this example, formats are specified with the FITS letter codes. When
there is a number (>1) preceeding a (numeric type) letter code, it means
each cell in that field is a one-dimensional array. In the case of column c4,
each cell isan array (anumarray) of 1000 elements.

For character string fields, the number can be either before or after the
letter A’ and they will mean the same string size. So, for columns c1 and
c3, they both have 10 characters in each of their cells. For numeric data
type, the dimension number must be before the letter code, not after.

After the columns are constructed, the new_table function can be used
to construct atable HDU. We can either go through the column definition
object:

>>>
>>>

col defs = pyfits. Col Defs([cl,c2,c3,c4,ch])
tbhdu = pyfits. new_ tabl e(col defs)

or directly use the new_table function:

>>>

tbhdu = pyfits.new table([cl,c2,c3,c4,c5])




24 | Chapter 4: Table Data

A look of the newly created HDU’s header will show that relevant

keywords are properly popul ated:
--> print tbhdu. header. ascardli st ()
XTENSI ON= ' Bl NTABLE’ / binary tabl e extension
BITPI X = 8 /| array data type
NAXIS = 2 / nunber of array dinensions
NAXI S1 = 4025 / length of dinension 1
NAXI S2 = 4 | length of dinension 2
PCOUNT = 0 / nunber of group paraneters
GCOUNT = 1 / nunber of groups
TFI ELDS = 5 / nunber of table fields
TTYPEL = 'target
TFORML = ' 10A
TTYPE2 = ’counts
TFORM = "1
TUNIT2 = 'DN
TTYPE3 = 'notes
TFORMB = ' 10A
TTYPE4A = 'spectrum
TFORW = ' 1000E
TTYPE5S = 'flag
TFORMb = 'L




CHAPTER b5:

Verification

In this chapter . ..

5.1 FITS Standard / 25
5.2 Verification Options / 26
5.3 Verifications at Different Data Object Levels / 27

PyFITS has built in a flexible scheme to verify FITS data being
conforming to the FITS standard. The basic verification philosophy in
PyFITS isto betolerant in input and strict in output.

When PyFITS reads a FITS file which is not conforming to FITS
standard, it will not raise an error and exit. It will try to make the best
educated interpretation and only gives up when the offending data is
accessed and no unambiguous interpretation can be reached.

On the other hand, when writing to an output FITS file, the content to be
written must be strictly compliant to the FITS standard by default. This
default behavior can be overwritten by severa other options, so the user
will not be hold up because of aminor standard violation.

5.1 FITS Standard

Since FITS standard is a "loose" standard, there are many places the
violation can occur and to enforce them all will be aimost impossible. Itis
not uncommon for major observatories to generate data products which are
not 100% FITS compliant. Some observatories also developed their own
sub-standard (dialect?) and some of these become so prevailent and they
become de facto standard. One such example is the the long string value
and the use of the CONTINUE card (see Chapter 4).

25



26 | Chapter 5: Verification

The violation of the standard can happen at different levels of the data
structure. PyFITS's verification scheme is developed based on such a
hierachiacal levels. Here are the 3 levels of the PyFITS verification levels:

(1) the HDU List.
(2) Each HDU,
(3) Each cardimage in the HDU Header,

At each level, there is a verify() method which can be called at anytime.
If the method() is caled at the HDL List leve, it verifies standard
compliance at all three levels, but a call of verify() at the Card level will
only check the compliance of that Card. Since PyFITS is tolerance when
reading an FITS file, no verify() is called on input. On output, verify() is
called with the most restrictive option as default.

These three levels corresponds to the three categories of pyfits objects.
HDUL.ist, any HDU (e.g. PrimaryHDU, ImageHDU, etc.), and Card. They
are the only objects having the verify() method. All other objects (e.g.
CardList) do not have any verify method.

5.2 Verification Options

There are 5 options for al verify(option) calsin PyFITS. In addition,
they available for the output_verify argument of the following methods:
close(), writeto(), and flush(). In these cases, they are passed to a verify()
call within these methods. The 5 options are:

exception

This option will raise an exception, if any FITS standard is violated.
This is the default option for output (i.e. when writeto(), close(), or flush()
is caled. If a user wants to overwrite this default on o.utput, the other
options listed below can be use

ignore

This option will ignore any FITS standard violation. On output, it will
write the HDU List content to the output FITS file, whether or not it is
conforming to FITS standard.

Thei gnor e option isuseful in these situations, for example, (1) An input
FITSfile with non-standard isread and the user wants to copy or write out
after some modification to an output file. The non-standard will be
preserved in such output file. (2) A user wants to create a non-standard
FITSfile on purpose, possibly for testing purpose.

No warning message will be printed out. Thisis like asilent warn (see
below) option.



Verifications at Different Data Object Levels Il 27

fix

This option wil try to fix any FITS standard violations. It is not aways
possible to fix such violations. In feneral, there are two kinds of FITS
standard violation: fixable and not fixable. For example, if akeyword hasa
floating number with an exponential notation in lower case '€ (eg.
1.23el1l) instead of the upper case’E’ asrequired by the FITS standard, it s
a fixable violation. On the other hand, a keyword name like 'PI1." is not
fixable, sinceit will not know what to use to replace the disallowed periods.
If aviolation is fixable, this option will print out a message noting it is
fixed. If itisnot fixable, it will throw an exception.

The priciple behind the fixing is do no harm. For example, it is
plausible to ’'fix’ a Card with a keyword name like 'Pl." by deleting it, but
PyFITS will not take such action to hurt the integrity of the data.

Not all fixes may be the "correct” fix, but at least PyFITS will try to
make the fix in such away that it will not throw off other FITS readers.

silentfix

Same asfi x, but will not print out informative messages. This may be
useful in a large script where the user does not want excessive harmless
messages. |If the violation is not fixable, it will still throw an exception.

warn

This option is Ithe same as the i gnore option but will send warning
messages. It will not try to fix any FITS standard violations whether
fixable or not.

5.3 Verifications at Different Data Object Levels

We'll examine what PyFITS's verification does at the three different
elevels:

5.3.1 Verification at HDUList

At the HDU List level, the verification is only for two simple cases:

(1) Verify the first HDU in the HDU list is a Primary HDU. Thisisa
fixable case. Thefix istoinsert aminimal Primary HDU to the HDU list.

(2) Verify second or later HDU in the HDU list is not a Primary HDU.
Violation will not be fixable.



28 P Chapter 5: Verification

5.3.2 Varification at Each HDU

For each HDU, the mandatory keywords, their locations in the header,
and their values will be verified. Each FITS HDU has a fixed set of
required keywords in a fixed order. For example, the Primary HDU'’s
header must at |east have the following keywords

SI MPLE = T/
BITPI X = 8 /
NAXIS = 0

If any of the mandatory keyword is missing or in the wrong order, the
fi x option will fix them:

>>> print hdu. header # has a ’bad header
SIMPLE = T/

NAXIS = 0

BITPI X = 8 /

>>> hdu.verify(’'fix') # fix it

Qut put verification result:
"BITPI X card at the wong place (card 2). Fixed by noving it to the right
pl ace (card 1).

>>> print h. header # voil a!

SIMPLE = T/ conforms to FITS standard
BITPI X = 8 / array data type

NAXIS = 0

5.3.3 Varification at Each Card

The lowest level, the Card, aso has the most complicated verification
possibilities. Hereisalit of fixable and not fixable Cards:

Fixable Cards:

(1) floating numbers with lower case’€ or 'd’

(2) the equal sign is before column 9 in the card image.

(3) string value without enclosing quotes.

(4) missing equal sign before column 9 in the card image.

(5) space between numbers and E or D in floating point values.
(6) unparsable values will be "fixed" as a string.

Here are some examples of fixable card:



Verifications at Different Data Object Levels Il 29

>>> print hdu. header.ascardlist()[4:] # has a bunch of fixable cards

Fl X1
FIl X2= 2
Fl X3
Fl X4
Fl X5
Fl X6

# can still
>>> hdu. header [ 5]

2

2.1e23

string val ue without quotes

2

2.4 e 03

"2 10

access the values before the fix

>>> hdu. header [’ fi x4’ ]

2

>>> hdu. header [’ fi x5"]

2400.0

>>> hdu. verify('silentfix’)
>>> print hdu. header. ascard[ 4:]

FI X1 = 2. 1E23
FI X2 = 2
Fl X3 = 'string value w thout quotes
FI X4 = 2
FI X5 = 2. 4E03
Fl X6 =210 ’
Unfixable Cards:

(2) llegal charactersin keyword name.

WEe'll summarize the verification with a"life-cycle" example:



30 W Chapter 5: Verification

# create a PrinmaryHDU
>>> h=pyfits.PrimryHDU()

# Try to add an non-standard FITS keyword 'P.I.’ (FITS does no allow .’
# in the keyword), if using the update() nethod - doesn’t work!

>>> h.update(’ P.1.’,’ Hubble’)

Val ueError: Illegal keyword name 'P.I.

# Have to do it the hard way (so a user will not do this by accident)
# First, create a card inage and give verbatimcard content (including
# the proper spacing, but no need to add the trailing blanks)

>>> c=pyfits.Card().fronstring("P.I. = " Hubbl e’ ")

# then append it to the header (nust go through the Cardlist)
>>> h. header. ascardlist().append(c)

# Now if we try to wite to a FITS file, the default output verification
# will not take it.
>>> h.witeto('pi.fits")
Qut put verification result:
HDU O:

Card 4:

Unfixable error: Illegal keyword nane 'P.1.’

rai se VerifyError

VerifyError

# Must set the output_verify argunment to 'ignore’, to force witing a
# non-standard FITS file
>>> h.witeto('pi.fits’,output_verify="ignore’)

# Now readi ng a non-standard FITS file

# pyfits is magnani nous in reading non-standard FITS file
>>> hdus=pyfits.open(’' pi.fits")

>>> print hdus[0]. header.ascardlist()

SIMPLE = T/ conforms to FITS standard
BITPI X = 8 / array data type

NAXIS = 0 / nunber of array dinensions
EXTEND = T

P. 1. = ' Hubbl e’

# even when you try to access the offending keyword, it does NOT conplain
--> hdus[O0]. header[' p.i. ]
" Hubbl e’

# But if you want to nmake sure if there is anything wong/non-standard,
# use the verify() nethod
--> hdus. verify()
Qut put verification result:
HDU O:
Card 4:
Unfixable error: Illegal keyword nane 'P.1.’




CHAPTER 6:

Less Familiar Objects

In this chapter . ..

6.1 ASCII Tables / 31
6.2 Variable Length Array Tables / 33
6.3 Random Access Group / 35

In this chapter, we'll discuss less frequently used FITS data structures.
They include ASCII tables, variable length tables, and random access
group FITSfiles,

6.1 ASCII Tables

FITS standard supports both binary and ASCI|I tables. In ASCII tables,
all the data are stored in a human readable, text form, so it takes up more
space and extra processing to parse the text for numeric data.

In PyFITS, the user interface for ASCII tables and binary tables are
basically the same, i.e. the data is in the . dat a attribute and the fi el d()
method is used to refer to the columns and it returns a numarray or strings

31



32 P Chapter 6: Less Familiar Objects

array. When reading the table, PyFITS will automatically detect what kind
of tableitis.

>>> hdus=pyfits.open(’ ascii_table.fits")

>>> hdus[1].data[: 1]

array(

[ (10.123000144958496, 37)],

formats=[’'1all’, '1a5’],

shape=1,

nanes=['a’, 'b’])

>>> hdus[1].data.field(’a)

array([ 10.12300014, 5.19999981, 15. 60999966, 0.
345. ], type=Fl oat 32)

>>> hdus[ 1] .data.formats

["E10.4, "15]

Note that the formats in the record array refer to the raw data which are
ASCII strings (therefore *a11' and ' a5’ ), but the . formats attribute of
dat a retains the original format specifications ('E10. 4’ and’'15’).

6.1.1 Create an ASCII Table

To create an ASCII table from scratch is similar to creating a binary
table. The difference isin the Column definitions. The columng/fields in
an ASCII ismore limited than the binary table. It does not allow more than
one numerical value in a cell. Also, it only supports a subset of what
allowed in the binary table, namely character strings, integer, and (single
and double precision) floating point numbers. Boolean and complex
numbers are not allowed.

The format syntax (the values of the TFORM keywords) is different
from that of a binary table, they are:

Aw Character string

I w (Deci nal) Integer

Fw. d Singl e precision rea

Ew. d Single precision real, in exponential notation
Dw. d Doubl e precision real, in exponential notation

where, wis the width, and d the number of digits after the decimal point.
The syntax difference between ASCII and binary tables can be confusing.
For example, afield of 3-character string is specified ’3A in binary table but
A3’ in ASCII table.

The other difference is the need to specify the table type when using
either col Def () Or new_tabl e().

The default value for t bt ype IS’ Bi nTabl eHDU .



Variable Length Array Tables Il 33

# Define the col ums
>>> jnport numarray.strings as chararray

>>> al = chararray.array([’ abcd’,’ def’])
>>> rl = numarray.array([11.,12.])
>>> ¢l = pyfits. Col um(nanme="abc’,format="A3", array=al)

>>> c2 = pyfits. Col um(nanme="def’ ,format="E , array=r1, bscal e=2. 3,
bzer 0=0. 6)
>>> ¢3 = pyfits.Colum(nanme="t1', format="1", array=[91,92,93])

# Create the table
>>> x = pyfits. Col Defs([cl, c2,c3],tbtype=" Tabl eHDU )
>>> hdu = pyfits. new tabl e(x,tbtype=" Tabl eHDU )

# O, sinply,
>>> hdu = pyfits.new table([cl,c2,c3],tbtype=" Tabl eHDU )

>>> hdu.witeto( ascii.fits’)

>>> hdu. dat a
array(

[("abc’, 11.0, 91),
('def’, 12.0, 92),

("', 0.0, 93)],

formats=['1a3’, ’'lal4’, ’'1lall’],
shape=3,

names=["abc’, 'def’, "t1'])

6.2 Variable Length Array Tables

FITS standard also supports variable length array tables. The basic idea
isthat sometimes, it is desirable to have tables whose cellsin the samefield
(column) have the same data type but have different lengths/dimensions.
Compared with the standard table data structure, the variable length table
can save storage space if there is a large dynamic range of data length in
different cells.

A variable length array table can have one or more fields (columns)
which are variable length. The rest of the fields (columns) in the same
table can still be regular, fixed-length ones. PyFITS will automatically
detect what kind of field it isreading. No specia action is needed from the
user. The data type specification (i.e. the value of the TFORM keyword)
uses an extraletter 'P and the format is

r Pt ( max)



34 | Chapter 6: Less Familiar Objects

wherer isO, 1, or absent, t is one of the letter code for regular table data
type (L, B, X, 1, J, etc. currently, the X format is not supported for variable
length array field in PyFITS), and max is the maimum number of elements.
So, for a variable length field of Int32, The corresponding format spec is,
e.g. 'PJ(100)" .

1Pl ( 20)

array([ 1, 88,

>>> f = pyfits.open(’variable length table.fits’)

>>> print f[1].header[ tfornb’]

>>> print f[1l].data.field(4)[: 3]
[array([1], type=Int16) array([88, 2], type=lnt16)

3], type=Intl16)]

6.2.1

The above example shows a variable length array field of datatype Int16
and its first row has one element, second row has 2 elements etc.
Accessing variable length fields is amost identical to regular fields, except
that operations on the whole filed are usually not possible. A user has to
process the field row by row.

Create Variable Length Array Table

To create a variable length table is almost identical to creating a regular
table. The only difference isin the creation of field definitions which are
variable length arrays. Firgt, the data type specification will need the 'P
letter, and secondly, the field data must be an objects array which is



Random Access Group Il 35

included in the numarray module. Here is an example of creating a table
with two fields, oneis regular and the other variable length array.

>>> jnport numarray. objects as obj

# Define col umms
# Wiat’s in the parenthesis of the Pformat is not inportant, it can be bl ank
>>> ¢l = pyfits. Col um(nane="var’, format="PJ()’,\

array=obj.array([[45., 56], numarray.array([11, 12, 13])]))
pyfits. Col um(nane="xyz',format="21",array=[[11, 3],[12,4]])

>>> c2

# the rest is the sane as regul ar table.

# Create the table HDU

>>> t bhdu=pyfits. new table([cl,c2])

>>> print tbhdu.data

RecArray[

(array([45, 56]), array([11, 3], type=Intl6)),
(array([ 11, 12, 13]), array([12, 4], type=Intl1l6))
]

# wite to a FITS file
>>> tbhdu.writeto(’'var_table.fits’)

>>> hdu = pyfits.open(’var _table.fits")
# Note that heap info is taken care of (PCOUNT) when witten to FITS file.

>>> print hdu[1]. header. ascardlist()
XTENSI ON= ' Bl NTABLE' / binary tabl e extension

BITPI X = 8 / array data type

NAXIS = 2 / nunber of array dinensions
NAXI S1 = 12 / length of dinension 1
NAXI S2 = 2 / length of dinension 2
PCOUNT = 20 / nunber of group paraneters
GCOUNT = 1 / nunber of groups

TFI ELDS = 2 / nunber of table fields
TTYPEL = 'var

TFORML = " PJ(3)

TTYPE2 = 'Xxyz

TFORMR = ' 2|

6.3 Random Access Group

Another less familiar data structure supported by FITS standard is the
random access group. This convention was established before the binary
table extension wasintroduced. In most csesits use can now be superseded
by the binary table. It ismostly used in radio interferometry.

Like Primary HDU, a Random Access Group HDU is aways the first
HDU of aFITSfile. It's data has one or more groups. Each group may



36 | Chapter 6: Less Familiar Objects

6.3.1

have any number (including 0) of parameters, together with an image. The
parameters and the image have the same data type.

All groups in the same HDU have the same data structure, i.e. same data
type (specified by the keyword BITPIX, as in image HDU), same number
of parameters (specified by PCOUNT), and the same size and shape
(specified by NAXIS's) of the image data. The number of groups is
specified by GCOUNT and the keyword NAXIS1 is aways 0. Thus the
total data size for a Random Access Group HDU is

| BITPIX] * GCOUNT * (PCOUNT + NAXI S2* NAXI S3*... *NAXI Sn)

Header and Summary

Accessing the header of a Random Access Group HDU is no different
from any other HDU. Just usethe. header attribute.

The content of the HDU can similarly be summarized by using the
i nfo() method:

True

7956

6

>>> f.info()
No. Name

0 AN
6 Parameters

>>> f=pyfits.open(’ random group.fits’)
>>> print f[O].header[’ groups’]

>>> print f[O].header[’ gcount’]

>>> print f[O].header[’ pcount’]

Fi | ename: random group.fits

Type Car ds Di nensi ons For mat
G oupsHDU 158 (3, 4, 1, 1, 1) Foat32 7956 G oups




Random Access Group Il 37

6.3.2 Data: Group Parameters

The data part of a random access group HDU is, like other HDU's, in
the . dat a attribute. It includes both parameter(s) and image array(s).

# show the data in 100th group, including paraneters and data
>>> print f[0].data[99]
(-8.1987486677035799e- 06, 1.2010923615889215e- 05,
-1.011189139244005e- 05, 258.0, 2445728., 0.10, array([[[[[ 12.4308672 ,
0. 56860745, 3.99993873],

[ 12.74043655, 0. 31398511, 3.99993873],

[ o. . 0. . 3.99993873],

[ O , 0. , 3.99993873] 1111, type=Fl oat32))

The data first lists al the parameters, then the image array, for the
specified group(s). Asareminder, theimage datain thisfile hasthe shape
of (1,1,1,4,3) in Python or C convention, or (3,4,1,1,1) in IRAF or
FORTRAN convention.

To access the parameters, first find out what the parameter names are,
with the . par nanes attribute:

# get the paraneter nanes
>>> f[0]. dat a. par nanes
[Tuu--", "vv--", "ww-', 'baseline’, 'date', 'date’]

The group parameter can be accessed by the . par () method. Like the
tablefiel d() method, the argument can be either index or name:

# Access group paraneter by name or by index
>>> print f[0].data. par(0)[99]
-8.1987486677035799e- 06

>>> print f[0].data.par(’ uu--')[99]
-8.1987486677035799e- 06

Note that the parameter name dat e’ appearstwice. Thisisafeaturein
the random access group, and it means to add the values together. Thus:

# Duplicate group paranmeter name 'date’ for 5th and 6th paraneters
>>> print f[0].data.par(4)[99]

2445728.0
>>> print f[0].data. par(5)[99]
0.10

# When access by nane, it adds the values together if the nane is shared
# by nore than one paraneter

>>> print f[0].data.par(’ date' )[99]

2445728. 10




38 | Chapter 6: Less Familiar Objects

The . par () isamethod for either the entire data object or one data item
(agroup). So there are two possible ways to get a group parameter for a
certain group, thisis similar to the situation in table data (with itsfi el d()
method):

# Access group paraneter by selecting the row (group) nunber | ast
>>> print f[0].data. par(0)[99]
-8.1987486677035799e- 06

# Access group paraneter by selecting the row (group) nunber first
>>> print f[0].data]99]. par(0)
-8.1987486677035799e- 06

On the other hand, to modify a group parameter, we can either assign the
new value directly (if accessing the row/group number last). or use the
setpar () Mmethod (if accessing the row/group number first). The method
set par () IS also needed for updating by name if the parameter is shared by
more than one parameters:

# Updat e group paraneter when selecting the row (group) nunber | ast
>>> f[0].data.par(0)[99] = 99.

# Updat e group paraneter when selecting the row (group) nunber first
>>> f[0].data[99].setpar(0, 99.) # or setpar(’uu--', 99.)

# Updat e group paraneter by nanme when the nane is shared by nore than

# one paraneters, the new val ue nust be a tupl e of constants or sequences
>>> f[0].data[ 99]. setpar (' date’, (2445729., 0.3))

>>> f[0].data[:3].setpar(’'date’, (2445729., [0.11,0.22,0.33]))

--> f[0].data[:3].par( date’)

array([ 2445729.11 , 2445729. 22 , 2445729, 33000001])

6.3.3 Data: Image Data

The image array of the data portion is accessable by the . dat a attribute
of the data object. A numarray is returned:

# image part of the data
>>> print f[0].data. data[99]

array([[[[[ 12.4308672 , 0.56860745,  3.99993873],
[ 12.74043655,  0.31398511, 3. 99993873],
[ o , 0. ., 3.99993873],

[ o , 0. ., 3.99993873]1]1]], type=Fl oat 32)




Random Access Group Il 39

6.3.4 Create a Random Access Group HDU

To create arandom access group HDU from scratch, use GroupDat a() tO
encapsulate the data into the group data structure, and use G oupsHDU() tO
create the HDU itself:

# Create the inmage arrays. The first dinension is the nunber of groups.
>>> jndata = nunarray. arange(100., shape=(10,1,1,2,5))

# Next, create the group paraneter data, we'll have two paraneters

# Note that the size of each paraneter’s data is al so the nunber of groups.
# A paraneter’s data can al so be a nuneric constant.

>>> pdatal = nunarray. arange(10)+0. 1

>>> pdata2 = 42

# Create the group data object, put paraneter nanmes and paraneter data
# in lists and assigned to their correspondi ng argunents.
# If the data type (bitpix) is not specified, the data type of the inage
# will be used.
>>> x = pyfits. GoupData(indata, parnanes=['abc’,’xyz’'], \

par dat a=[ pdat al, pdata2?], bitpix=-32)

# Now, create the GroupsHDU and wite to a FITS file.
>>> hdu = pyfits. G oupsHDU(x)
>>> hdu.witeto(' test_group.fits’)

>>> print hdu. header.ascardlist()[:]

S| MPLE T/ conforms to FITS standard

Bl TPI X /| array data type

NAXI S / number of array dinensions

NAXI S1

NAXI S2

NAXI S3

NAXI S4

NAXI S5

EXTEND

GROUPS

PCOUNT

GCOUNT

PTYPE1 "abc

PTYPE2 ' Xyz

--> print hdu.data[: 2]

RecArray[

(0.10000000149011612, 42.0, array([
[ 5., 6., 7., 8., 9.1]]

(1.1000000238418579, 42.0, array([[
[ 15., 16., 17., 18.,

-3

/ has groups
/ number of paraneters

2
5
0
5
2
1
1
-
T
2
0 / nunber of groups

[rr o., 1., 2., 3., 4.7,
11, type=Fl oat32)),

[[ 10., 11., 12., 13., 14.],
19.1111, type=Fl oat 32))

]




40 |l Chapter 6: Less Familiar Objects



CHAPTER 7:

Reference Manual

In this chapter . ..

This chapter lists functions, public classes and their methods, and their
argumentsin PyFITS.

41



42 W Chapter 7: Reference Manual



A

add_blank() 17
add_comment() 17
add_history() 17
append tables 32
append() 13
ASCII table 43
creation 44
ascradlist() 19

B

BSCALE 24
BZERO 24

C

card
fromstring() 19
card images 18
card list 19
card verification 40
Card() constructor 19
CardList object 19
ColDefs() 35
column definition (ColDefs) 11
column definitions 35
Column() constructor 35
COMMENT card 17
commentary cards 17
CONTINUE card 20
convenience function
append() 13
getdata() 12
getheader() 11

Index

getval() 12

info() 13

update() 13

writeto() 13
convenience functions 11
create ASCI|I table 44
create new FITSfiles 9

image 10

table 10
create random access group HDU 51
create tables 34

D

data
image 5
input 3, 16, 24, 32
table 7

download 1

F

field() 31

FITS 1

FITS standard 37
fixable card 40

G

getdata() 12
getheader() 11
getval() 12

group parameters 49

55



56 | Index

H P
HDU verification 40 par() for random access group 49
HDULIist PyFITS 1
close() 4 install 1
extension 6 support 2
info() 4 tutorial 3
writeto() 9 Python
HDUL.ist verification 39 version 1
header 15
add_blank() 17 R

add_comment() 17
add_history() 17
ascardlist() 5,19
card images 18
keyword value 4

random access group data par() 49
random access group HDU creation 51
record array 7, 30

header keyword 16 S
case sensitivity 16 save changes 9
commentary cards 17 scale() 25
delete 16 scaled datain tables 33
read 16 scaled image data 24
update 16 section
update() 17 scaled data 27
Help Desk
contacting 2 T
HISTORY card 17 table
| columns attribute 8
creation 34
image data 23 scaled data 33
info() table appending 32
convenience function 13 table data 29
table field (column) access 31
M table merging 32
table metadata 30
merge tables 32 tables
N field() 8
nes table() 35 U
new table creation 35 unfixable card 41
new_table() 11
numarray 1 Update() . :
convenience function 13
download 1
o Vv

open() 3 variable length array table 45



creation 46
verification 37
verification at Card 40
verification at HDU 40
verification at HDUList 39
verification options 38

\W

writeto() 9, 13
writing scaled imaged data 25

W 57



	PyFITS User’s Manual
	Table of Contents
	Chapter 1: Introduction
	1.1 Install PyFITS
	1.2 User Support for PyFITS

	Chapter 2: A Quick Tutorial
	2.1 Read and Update Existing FITS Files
	2.1.1 Open a FITS file
	2.1.2 Working with the Header
	2.1.3 Working with Image Data
	2.1.4 Working with Table Data

	2.2 Create New FITS Files
	2.2.1 Save Changes
	2.2.2 Create FITS Images from Scratch
	2.2.3 Create FITS Tables from Scratch

	2.3 Use the Convenience Functions

	Chapter 2: FITS Headers
	2.1 Header of an HDU
	2.2 The Header Attribute
	2.2.1 Value Access and Update
	2.2.2 COMMENT, HISTORY, and Blank Keywords

	2.3 Card Images
	2.4 Card List
	2.5 CONTINUE Cards
	2.6 HIERARCH Cards

	Chapter 3: Image Data
	3.1 Image Data as an Array
	3.2 Scaled Data
	3.2.1 Reading Scaled Image Data
	3.2.2 Writing Scaled Image Data

	3.3 Data Section

	Chapter 4: Table Data
	4.1 Table Data as a Record Array
	4.1.1 What is Record Array
	4.1.2 Metadata of a Table
	4.1.3 Reading a FITS Table

	4.2 Table Operations
	4.2.1 Select Records in a Table
	4.2.2 Merge Tables
	4.2.3 Appending Tables

	4.3 Scaled Data in Tables
	4.4 Create a FITS table
	4.4.1 Column Creation


	Chapter 5: Verification
	5.1 FITS Standard
	5.2 Verification Options
	5.3 Verifications at Different Data Object Levels
	5.3.1 Verification at HDUList
	5.3.2 Varification at Each HDU
	5.3.3 Varification at Each Card


	Chapter 6: Less Familiar Objects
	6.1 ASCII Tables
	6.1.1 Create an ASCII Table

	6.2 Variable Length Array Tables
	6.2.1 Create Variable Length Array Table

	6.3 Random Access Group
	6.3.1 Header and Summary
	6.3.2 Data: Group Parameters
	6.3.3 Data: Image Data
	6.3.4 Create a Random Access Group HDU


	Chapter 7: Reference Manual



