#!/usr/bin/env python """ pcolormesh uses a QuadMesh, a faster generalization of pcolor, but with some restrictions. """ from matplotlib.mlab import linspace, meshgrid import matplotlib.numerix as nx from pylab import figure,show import matplotlib.numerix.ma as ma from matplotlib import cm, colors n = 56 x = linspace(-1.5,1.5,n) X,Y = meshgrid(x,x); Qx = nx.cos(Y) - nx.cos(X) Qz = nx.sin(Y) + nx.sin(X) Qx = (Qx + 1.1) Z = nx.sqrt(X**2 + Y**2)/5; Z = (Z - nx.mlab.amin(Z)) / (nx.mlab.amax(Z) - nx.mlab.amin(Z)) # The color array can include masked values: Zm = ma.masked_where(nx.fabs(Qz) < 0.5*nx.mlab.amax(Qz), Z) fig = figure() ax = fig.add_subplot(121) ax.pcolormesh(Qx,Qz,Z) ax.set_title('Without masked values') ax = fig.add_subplot(122) # You can control the color of the masked region: #cmap = cm.jet #cmap.set_bad('r', 1.0) #ax.pcolormesh(Qx,Qz,Zm, cmap=cmap) # Or use the default, which is transparent: col = ax.pcolormesh(Qx,Qz,Zm) ax.set_title('With masked values') show()