The kinetic energy before gas expulsion can be expressed as:

T, = gM*a2 (1)
where the index 1 refers to before gas expulsion, M, is the mass in stars and
o is the velocity dispersion of the stars. To account for the velocity distri-
bution k is a correction factor which amounts to x = 1.17 for a Maxwellian
distribution.

A crude approximation for the potential energy of the stars before gas
expulsion can be written as:

GMtot
R

where My is the total mass (stars and gas), i.e. M, = LSF - M, LSF being
the local stellar fraction, and R is an arbitrary radius, e.g. the half-light
radius. Therefore we can express Wj in terms of M, as
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Directly after gas expulsion we have the situation that the velocities of
the stars have not changed yet and we get:

T, = T (4)

But with the gas gone the potential energy of the stars is due to the stars
alone and we can use the approximation:
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Now we see that our ansatz does not depend on the choice of R.
The virial ratio at (before) gas expulsion can be expressed as:
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We can express the velocity dispersion of the stars now as
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At the same time (just after gas expulsion) the escape velocity of the stars
is:
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Now we can express the ratio between these two quantities as:
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If we now assume a Maxwellian velocity dispersion and furthermore as-
sume that all remaining bound stars, i.e. fyoung, have velocities below the
escape velocity we get:
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Even though this looks like a very crude approximation the resulting curves
fit the results of our simulations very well. In case of very low bound fractions
one might want to think to include a factor fyounq in the calculation of the
potential, i.e. stars with velocities higher than the escape velocity are not
contributing to the potential and solve the equations iteratively.




